From ee25ad42c5e9ecdc5a3aa7125e657ce26cc9535c Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 02:48:50 +0000
Subject: [PATCH] temp
---
src/softmax_layer.c | 101 +++++++++++++++++++++++++++++++++++++++++---------
1 files changed, 83 insertions(+), 18 deletions(-)
diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index 28696b7..27f73fd 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -1,35 +1,100 @@
#include "softmax_layer.h"
+#include "blas.h"
+#include "cuda.h"
+#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
+#include <assert.h>
-softmax_layer *make_softmax_layer(int inputs)
+softmax_layer make_softmax_layer(int batch, int inputs, int groups)
{
- printf("Softmax Layer: %d inputs\n", inputs);
- softmax_layer *layer = calloc(1, sizeof(softmax_layer));
- layer->inputs = inputs;
- layer->output = calloc(inputs, sizeof(double));
- layer->delta = calloc(inputs, sizeof(double));
- return layer;
+ assert(inputs%groups == 0);
+ fprintf(stderr, "softmax %4d\n", inputs);
+ softmax_layer l = {0};
+ l.type = SOFTMAX;
+ l.batch = batch;
+ l.groups = groups;
+ l.inputs = inputs;
+ l.outputs = inputs;
+ l.output = calloc(inputs*batch, sizeof(float));
+ l.delta = calloc(inputs*batch, sizeof(float));
+
+ l.forward = forward_softmax_layer;
+ l.backward = backward_softmax_layer;
+ #ifdef GPU
+ l.forward_gpu = forward_softmax_layer_gpu;
+ l.backward_gpu = backward_softmax_layer_gpu;
+
+ l.output_gpu = cuda_make_array(l.output, inputs*batch);
+ l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
+ #endif
+ return l;
}
-void forward_softmax_layer(const softmax_layer layer, double *input)
+void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output)
+{
+ int b;
+ for(b = 0; b < batch; ++b){
+ int i;
+ int count = 0;
+ for(i = 0; i < hierarchy->groups; ++i){
+ int group_size = hierarchy->group_size[i];
+ softmax(input+b*inputs + count, group_size, temp, output+b*inputs + count, 1);
+ count += group_size;
+ }
+ }
+}
+
+void forward_softmax_layer(const softmax_layer l, network_state state)
+{
+ int b;
+ int inputs = l.inputs / l.groups;
+ int batch = l.batch * l.groups;
+ if(l.softmax_tree){
+ softmax_tree(state.input, batch, inputs, l.temperature, l.softmax_tree, l.output);
+ } else {
+ for(b = 0; b < batch; ++b){
+ softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs, 1);
+ }
+ }
+}
+
+void backward_softmax_layer(const softmax_layer l, network_state state)
{
int i;
- double sum = 0;
- for(i = 0; i < layer.inputs; ++i){
- sum += exp(input[i]);
- }
- for(i = 0; i < layer.inputs; ++i){
- layer.output[i] = exp(input[i])/sum;
+ for(i = 0; i < l.inputs*l.batch; ++i){
+ state.delta[i] += l.delta[i];
}
}
-void backward_softmax_layer(const softmax_layer layer, double *input, double *delta)
+#ifdef GPU
+
+void pull_softmax_layer_output(const softmax_layer layer)
{
- int i;
- for(i = 0; i < layer.inputs; ++i){
- delta[i] = layer.delta[i];
+ cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
+}
+
+void forward_softmax_layer_gpu(const softmax_layer l, network_state state)
+{
+ int inputs = l.inputs / l.groups;
+ int batch = l.batch * l.groups;
+ if(l.softmax_tree){
+ int i;
+ int count = 0;
+ for (i = 0; i < l.softmax_tree->groups; ++i) {
+ int group_size = l.softmax_tree->group_size[i];
+ softmax_gpu(state.input+count, group_size, inputs, batch, l.temperature, l.output_gpu + count);
+ count += group_size;
+ }
+ } else {
+ softmax_gpu(state.input, inputs, inputs, batch, l.temperature, l.output_gpu);
}
}
+void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
+{
+ axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1);
+}
+
+#endif
--
Gitblit v1.10.0