From eef9f8e5bb9fdbe22c6301a56f12e315f9ac64d9 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 23 May 2018 15:35:08 +0000
Subject: [PATCH] Minor fixes

---
 src/yolo_v2_class.cpp |   79 ++++++++++++++++++++++-----------------
 1 files changed, 44 insertions(+), 35 deletions(-)

diff --git a/src/yolo_v2_class.cpp b/src/yolo_v2_class.cpp
index 518ea65..03d581a 100644
--- a/src/yolo_v2_class.cpp
+++ b/src/yolo_v2_class.cpp
@@ -22,9 +22,16 @@
 
 #define FRAMES 3
 
-struct detector_gpu_t{
-	float **probs;
-	box *boxes;
+#ifdef GPU
+void check_cuda(cudaError_t status) {
+	if (status != cudaSuccess) {
+		const char *s = cudaGetErrorString(status);
+		printf("CUDA Error Prev: %s\n", s);
+	}
+}
+#endif
+
+struct detector_gpu_t {
 	network net;
 	image images[FRAMES];
 	float *avg;
@@ -33,23 +40,24 @@
 	unsigned int *track_id;
 };
 
-
 YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id)
 {
 	wait_stream = 0;
 	int old_gpu_index;
 #ifdef GPU
-	cudaGetDevice(&old_gpu_index);
+	check_cuda( cudaGetDevice(&old_gpu_index) );
 #endif
 
 	detector_gpu_ptr = std::make_shared<detector_gpu_t>();
-	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 
 #ifdef GPU
-	cudaSetDevice(gpu_id);
+	//check_cuda( cudaSetDevice(cur_gpu_id) );
+	cuda_set_device(cur_gpu_id);
+	printf(" Used GPU %d \n", cur_gpu_id);
 #endif
 	network &net = detector_gpu.net;
-	net.gpu_index = gpu_id;
+	net.gpu_index = cur_gpu_id;
 	//gpu_index = i;
 	
 	char *cfgfile = const_cast<char *>(cfg_filename.data());
@@ -60,7 +68,8 @@
 		load_weights(&net, weightfile);
 	}
 	set_batch_network(&net, 1);
-	net.gpu_index = gpu_id;
+	net.gpu_index = cur_gpu_id;
+	fuse_conv_batchnorm(net);
 
 	layer l = net.layers[net.n - 1];
 	int j;
@@ -69,22 +78,18 @@
 	for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
 	for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
 
-	detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
-	detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
-	for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
-
 	detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
 	for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
 
 #ifdef GPU
-	cudaSetDevice(old_gpu_index);
+	check_cuda( cudaSetDevice(old_gpu_index) );
 #endif
 }
 
 
 YOLODLL_API Detector::~Detector() 
 {
-	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
 
 	free(detector_gpu.track_id);
@@ -93,14 +98,10 @@
 	for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
 	for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
 
-	for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
-	free(detector_gpu.boxes);
-	free(detector_gpu.probs);
-
 	int old_gpu_index;
 #ifdef GPU
 	cudaGetDevice(&old_gpu_index);
-	cudaSetDevice(detector_gpu.net.gpu_index);
+	cuda_set_device(detector_gpu.net.gpu_index);
 #endif
 
 	free_network(detector_gpu.net);
@@ -111,11 +112,11 @@
 }
 
 YOLODLL_API int Detector::get_net_width() const {
-	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	return detector_gpu.net.w;
 }
 YOLODLL_API int Detector::get_net_height() const {
-	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	return detector_gpu.net.h;
 }
 
@@ -173,7 +174,7 @@
 
 YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
 {
-	detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 	network &net = detector_gpu.net;
 	int old_gpu_index;
 #ifdef GPU
@@ -214,17 +215,21 @@
 		l.output = detector_gpu.avg;
 		detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
 	}
+	//get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
+	//if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
 
-	get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
-	if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
-	//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
+	int nboxes = 0;
+	int letterbox = 0;
+	float hier_thresh = 0.5;
+	detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
+	if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
 
 	std::vector<bbox_t> bbox_vec;
 
-	for (size_t i = 0; i < (l.w*l.h*l.n); ++i) {
-		box b = detector_gpu.boxes[i];
-		int const obj_id = max_index(detector_gpu.probs[i], l.classes);
-		float const prob = detector_gpu.probs[i][obj_id];
+	for (size_t i = 0; i < nboxes; ++i) {
+		box b = dets[i].bbox;
+		int const obj_id = max_index(dets[i].prob, l.classes);
+		float const prob = dets[i].prob[obj_id];
 		
 		if (prob > thresh) 
 		{
@@ -241,6 +246,7 @@
 		}
 	}
 
+	free_detections(dets, nboxes);
 	if(sized.data)
 		free(sized.data);
 
@@ -252,9 +258,10 @@
 	return bbox_vec;
 }
 
-YOLODLL_API std::vector<bbox_t> Detector::tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story)
+YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history, 
+	int const frames_story, int const max_dist)
 {
-	detector_gpu_t &det_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 
 	bool prev_track_id_present = false;
 	for (auto &i : prev_bbox_vec_deque)
@@ -279,7 +286,7 @@
 					float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2);
 					float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2);
 					unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff);
-					if (cur_dist < 100 && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
+					if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
 						dist_vec[m] = cur_dist;
 						cur_index = m;
 					}
@@ -301,8 +308,10 @@
 		if (cur_bbox_vec[i].track_id == 0)
 			cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
 
-	prev_bbox_vec_deque.push_front(cur_bbox_vec);
-	if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+	if (change_history) {
+		prev_bbox_vec_deque.push_front(cur_bbox_vec);
+		if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+	}
 
 	return cur_bbox_vec;
 }
\ No newline at end of file

--
Gitblit v1.10.0