From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/connected_layer.c |  140 ++++++++++++++++++++++++++++++----------------
 1 files changed, 90 insertions(+), 50 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index ac4c417..642570c 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -1,6 +1,8 @@
 #include "connected_layer.h"
 #include "utils.h"
-#include "mini_blas.h"
+#include "cuda.h"
+#include "blas.h"
+#include "gemm.h"
 
 #include <math.h>
 #include <stdio.h>
@@ -9,7 +11,6 @@
 
 connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
-    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
 
@@ -25,41 +26,69 @@
     layer->delta = calloc(batch*outputs, sizeof(float*));
 
     layer->weight_updates = calloc(inputs*outputs, sizeof(float));
-    //layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
-    layer->weights = calloc(inputs*outputs, sizeof(float));
-    float scale = 1./inputs;
-    scale = .05;
-    for(i = 0; i < inputs*outputs; ++i)
-        layer->weights[i] = scale*2*(rand_uniform()-.5);
-
     layer->bias_updates = calloc(outputs, sizeof(float));
-    //layer->bias_adapt = calloc(outputs, sizeof(float));
+
+    layer->weight_prev = calloc(inputs*outputs, sizeof(float));
+    layer->bias_prev = calloc(outputs, sizeof(float));
+
+    layer->weights = calloc(inputs*outputs, sizeof(float));
     layer->biases = calloc(outputs, sizeof(float));
-    for(i = 0; i < outputs; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = 1;
+
+
+    float scale = 1./sqrt(inputs);
+    for(i = 0; i < inputs*outputs; ++i){
+        layer->weights[i] = scale*rand_normal();
     }
 
-    #ifdef GPU
-    layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
-    layer->biases_cl = cl_make_array(layer->biases, outputs);
+    for(i = 0; i < outputs; ++i){
+        layer->biases[i] = scale;
+    }
 
-    layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs);
-    layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs);
+#ifdef GPU
+    layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs);
+    layer->biases_gpu = cuda_make_array(layer->biases, outputs);
 
-    layer->output_cl = cl_make_array(layer->output, outputs*batch);
-    layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
-    #endif
+    layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs);
+    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs);
+
+    layer->output_gpu = cuda_make_array(layer->output, outputs*batch);
+    layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch);
+#endif
     layer->activation = activation;
+    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     return layer;
 }
 
+void secret_update_connected_layer(connected_layer *layer)
+{
+    int n = layer->outputs*layer->inputs;
+    float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
+    float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
+                * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
+    float cos = dot/mag;
+    if(cos > .3) layer->learning_rate *= 1.1;
+    else if (cos < -.3) layer-> learning_rate /= 1.1;
+
+    scal_cpu(n, layer->momentum, layer->weight_prev, 1);
+    axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
+    scal_cpu(n, 0, layer->weight_updates, 1);
+
+    scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
+    axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
+    scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
+
+    axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
+
+    axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
+    axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
+}
+
 void update_connected_layer(connected_layer layer)
 {
     axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
     scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
 
-    scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1);
+    axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
     axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
     scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
 }
@@ -83,9 +112,10 @@
 void backward_connected_layer(connected_layer layer, float *input, float *delta)
 {
     int i;
+    float alpha = 1./layer.batch;
     gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
     for(i = 0; i < layer.batch; ++i){
-        axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
+        axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
     }
     int m = layer.inputs;
     int k = layer.batch;
@@ -93,7 +123,7 @@
     float *a = input;
     float *b = layer.delta;
     float *c = layer.weight_updates;
-    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
+    gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
 
     m = layer.batch;
     k = layer.outputs;
@@ -110,66 +140,76 @@
 
 void pull_connected_layer(connected_layer layer)
 {
-    cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
-    cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
+    cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
+    cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs);
+    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
+    cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
 }
 
 void push_connected_layer(connected_layer layer)
 {
-    cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
-    cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
+    cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
+    cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs);
+    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
+    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
 }
 
 void update_connected_layer_gpu(connected_layer layer)
 {
-    axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
-    scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
+/*
+    cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
+    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
+    printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs));
+*/
 
-    scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
-    axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
-    scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
-    pull_connected_layer(layer);
+    axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1);
+
+    axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+    axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
+    scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1);
 }
 
-void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
+void forward_connected_layer_gpu(connected_layer layer, float * input)
 {
     int i;
     for(i = 0; i < layer.batch; ++i){
-        copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1);
+        copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1);
     }
     int m = layer.batch;
     int k = layer.inputs;
     int n = layer.outputs;
-    cl_mem a = input;
-    cl_mem b = layer.weights_cl;
-    cl_mem c = layer.output_cl;
+    float * a = input;
+    float * b = layer.weights_gpu;
+    float * c = layer.output_gpu;
     gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation);
+    activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
 }
 
-void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta)
+void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta)
 {
+    float alpha = 1./layer.batch;
     int i;
-    gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl);
+    gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu);
     for(i = 0; i < layer.batch; ++i){
-        axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1);
+        axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1);
     }
     int m = layer.inputs;
     int k = layer.batch;
     int n = layer.outputs;
-    cl_mem a = input;
-    cl_mem b = layer.delta_cl;
-    cl_mem c = layer.weight_updates_cl;
-    gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
+    float * a = input;
+    float * b = layer.delta_gpu;
+    float * c = layer.weight_updates_gpu;
+    gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
 
     m = layer.batch;
     k = layer.outputs;
     n = layer.inputs;
 
-    a = layer.delta_cl;
-    b = layer.weights_cl;
+    a = layer.delta_gpu;
+    b = layer.weights_gpu;
     c = delta;
 
     if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
 }
-    #endif
+#endif

--
Gitblit v1.10.0