From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/convolutional_kernels.cu |   68 ++++++++++++---------------------
 1 files changed, 25 insertions(+), 43 deletions(-)

diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 6461aff..bcf307f 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -8,7 +8,7 @@
 #include "cuda.h"
 }
 
-__global__ void bias(int n, int size, float *biases, float *output)
+__global__ void bias_output_kernel(float *output, float *biases, int n, int size)
 {
     int offset = blockIdx.x * blockDim.x + threadIdx.x;
     int filter = blockIdx.y;
@@ -17,22 +17,20 @@
     if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
 }
 
-extern "C" void bias_output_gpu(const convolutional_layer layer)
+extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
 {
-    int size = convolutional_out_height(layer)*convolutional_out_width(layer);
-
     dim3 dimBlock(BLOCK, 1, 1);
-    dim3 dimGrid((size-1)/BLOCK + 1, layer.n, layer.batch);
+    dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
 
-    bias<<<dimGrid, dimBlock>>>(layer.n, size, layer.biases_gpu, layer.output_gpu);
+    bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
     check_error(cudaPeekAtLastError());
 }
 
-__global__ void learn_bias(int batch, int n, int size, float *delta, float *bias_updates)
+__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale)
 {
     __shared__ float part[BLOCK];
     int i,b;
-    int filter = (blockIdx.x + blockIdx.y*gridDim.x);
+    int filter = blockIdx.x;
     int p = threadIdx.x;
     float sum = 0;
     for(b = 0; b < batch; ++b){
@@ -44,40 +42,18 @@
     part[p] = sum;
     __syncthreads();
     if(p == 0){
-        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
+        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += scale * part[i];
     }
 }
 
-extern "C" void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
+extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
 {
-    int size = convolutional_out_height(layer)*convolutional_out_width(layer);
+    float alpha = 1./batch;
 
-
-    learn_bias<<<cuda_gridsize(layer.n), BLOCK>>>(layer.batch, layer.n, size, layer.delta_gpu, layer.bias_updates_gpu);
+    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, alpha);
     check_error(cudaPeekAtLastError());
 }
 
-extern "C" void test_learn_bias(convolutional_layer l)
-{
-    int i;
-    int size = convolutional_out_height(l) * convolutional_out_width(l);
-    for(i = 0; i < size*l.batch*l.n; ++i){
-        l.delta[i] = rand_uniform();
-    }
-    for(i = 0; i < l.n; ++i){
-        l.bias_updates[i] = rand_uniform();
-    }
-    cuda_push_array(l.delta_gpu, l.delta, size*l.batch*l.n);
-    cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
-    float *gpu = (float *) calloc(l.n, sizeof(float));
-    cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
-    for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
-    learn_bias_convolutional_layer_ongpu(l);
-    learn_bias_convolutional_layer(l);
-    cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
-    for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
-}
-
 extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in)
 {
     int i;
@@ -86,30 +62,29 @@
     int n = convolutional_out_height(layer)*
         convolutional_out_width(layer);
 
-    bias_output_gpu(layer);
+    bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
 
     for(i = 0; i < layer.batch; ++i){
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
+        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
         float * a = layer.filters_gpu;
         float * b = layer.col_image_gpu;
         float * c = layer.output_gpu;
         gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
     }
     activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
-    cuda_pull_array(layer.output_gpu, layer.output, m*n*layer.batch);
-    //for(i = 0; i < m*n*layer.batch; ++i) printf("%f, ", layer.output[i]);
-    //printf("\n");
 }
 
 extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, float *in, float *delta_gpu)
 {
+    float alpha = 1./layer.batch;
     int i;
     int m = layer.n;
     int n = layer.size*layer.size*layer.c;
     int k = convolutional_out_height(layer)*
         convolutional_out_width(layer);
+
     gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
-    learn_bias_convolutional_layer_ongpu(layer);
+    backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
 
     if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1);
 
@@ -118,8 +93,8 @@
         float * b = layer.col_image_gpu;
         float * c = layer.filter_updates_gpu;
 
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
-        gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
+        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
+        gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n);
 
         if(delta_gpu){
 
@@ -129,7 +104,7 @@
 
             gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
 
-            col2im_ongpu(layer.col_image_gpu, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_gpu);
+            col2im_ongpu(layer.col_image_gpu, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w);
         }
     }
 }
@@ -153,6 +128,13 @@
 extern "C" void update_convolutional_layer_gpu(convolutional_layer layer)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
+
+/*
+    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, size);
+    cuda_pull_array(layer.filters_gpu, layer.filters, size);
+    printf("Filter: %f updates: %f\n", mag_array(layer.filters, size), layer.learning_rate*mag_array(layer.filter_updates, size));
+    */
+
     axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
     scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
 

--
Gitblit v1.10.0