From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/convolutional_layer.c |   60 ++++++++++++++++++++++++++++++++----------------------------
 1 files changed, 32 insertions(+), 28 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 6848511..7782e3d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -44,7 +44,6 @@
 convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
     int i;
-    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
 
     layer->learning_rate = learning_rate;
@@ -66,10 +65,8 @@
     layer->biases = calloc(n, sizeof(float));
     layer->bias_updates = calloc(n, sizeof(float));
     float scale = 1./sqrt(size*size*c);
-    //scale = .05;
     for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
     for(i = 0; i < n; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = scale;
     }
     int out_h = convolutional_out_height(*layer);
@@ -97,11 +94,10 @@
     return layer;
 }
 
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
 {
     layer->h = h;
     layer->w = w;
-    layer->c = c;
     int out_h = convolutional_out_height(*layer);
     int out_w = convolutional_out_width(*layer);
 
@@ -111,29 +107,49 @@
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
     layer->delta  = realloc(layer->delta,
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
+
+    #ifdef GPU
+    cuda_free(layer->col_image_gpu);
+    cuda_free(layer->delta_gpu);
+    cuda_free(layer->output_gpu);
+
+    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
+    #endif
 }
 
-void bias_output(const convolutional_layer layer)
+void bias_output(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            for(j = 0; j < out_h*out_w; ++j){
-                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] = biases[i];
             }
         }
     }
 }
 
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    float alpha = 1./batch;
+    int i,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            bias_updates[i] += alpha * sum_array(delta+size*(i+b*n), size);
+        }
+    }
+}
+
+
 void forward_convolutional_layer(const convolutional_layer layer, float *in)
 {
     int out_h = convolutional_out_height(layer);
     int out_w = convolutional_out_width(layer);
     int i;
 
-    bias_output(layer);
+    bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
 
     int m = layer.n;
     int k = layer.size*layer.size*layer.c;
@@ -153,20 +169,9 @@
     activate_array(layer.output, m*n*layer.batch, layer.activation);
 }
 
-void learn_bias_convolutional_layer(convolutional_layer layer)
-{
-    int i,b;
-    int size = convolutional_out_height(layer)
-        *convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
-        }
-    }
-}
-
 void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
 {
+    float alpha = 1./layer.batch;
     int i;
     int m = layer.n;
     int n = layer.size*layer.size*layer.c;
@@ -174,8 +179,7 @@
         convolutional_out_width(layer);
 
     gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
-
-    learn_bias_convolutional_layer(layer);
+    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
 
     if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
@@ -188,7 +192,7 @@
 
         im2col_cpu(im, layer.c, layer.h, layer.w, 
                 layer.size, layer.stride, layer.pad, b);
-        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
+        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
 
         if(delta){
             a = layer.filters;

--
Gitblit v1.10.0