From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic
---
src/darknet.c | 781 +++++--------------------------------------------------
1 files changed, 73 insertions(+), 708 deletions(-)
diff --git a/src/darknet.c b/src/darknet.c
index 64012e0..dbb30e0 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -1,697 +1,34 @@
-#include "connected_layer.h"
-#include "convolutional_layer.h"
-#include "maxpool_layer.h"
-#include "network.h"
-#include "image.h"
-#include "parser.h"
-#include "data.h"
-#include "matrix.h"
-#include "utils.h"
-#include "blas.h"
-#include "matrix.h"
-#include "server.h"
-
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
+#include "parser.h"
+#include "utils.h"
+#include "cuda.h"
+
#define _GNU_SOURCE
#include <fenv.h>
-void test_load()
-{
- image dog = load_image("dog.jpg", 300, 400);
- show_image(dog, "Test Load");
- show_image_layers(dog, "Test Load");
-}
-
-void test_parser()
-{
- network net = parse_network_cfg("cfg/trained_imagenet.cfg");
- save_network(net, "cfg/trained_imagenet_smaller.cfg");
-}
-
-#define AMNT 3
-void draw_detection(image im, float *box, int side)
-{
- int j;
- int r, c;
- float amount[AMNT] = {0};
- for(r = 0; r < side*side; ++r){
- float val = box[r*5];
- for(j = 0; j < AMNT; ++j){
- if(val > amount[j]) {
- float swap = val;
- val = amount[j];
- amount[j] = swap;
- }
- }
- }
- float smallest = amount[AMNT-1];
-
- for(r = 0; r < side; ++r){
- for(c = 0; c < side; ++c){
- j = (r*side + c) * 5;
- printf("Prob: %f\n", box[j]);
- if(box[j] >= smallest){
- int d = im.w/side;
- int y = r*d+box[j+1]*d;
- int x = c*d+box[j+2]*d;
- int h = box[j+3]*256;
- int w = box[j+4]*256;
- //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
- //printf("%d %d %d %d\n", x, y, w, h);
- //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
- draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
- }
- }
- }
- show_image(im, "box");
- cvWaitKey(0);
-}
-
-
-void train_detection_net(char *cfgfile)
-{
- float avg_loss = 1;
- //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
- network net = parse_network_cfg(cfgfile);
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = 1024;
- srand(time(0));
- //srand(23410);
- int i = 0;
- list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- data train, buffer;
- pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
- clock_t time;
- while(1){
- i += 1;
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
- //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
-
-/*
- image im = float_to_image(224, 224, 3, train.X.vals[923]);
- draw_detection(im, train.y.vals[923], 7);
- */
-
- normalize_data_rows(train);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
- if(i%100==0){
- char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
- save_network(net, buff);
- }
- free_data(train);
- }
-}
-
-void validate_detection_net(char *cfgfile)
-{
- network net = parse_network_cfg(cfgfile);
- fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- srand(time(0));
-
- list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val");
- char **paths = (char **)list_to_array(plist);
-
- int m = plist->size;
- int i = 0;
- int splits = 50;
- int num = (i+1)*m/splits - i*m/splits;
-
- fprintf(stderr, "%d\n", m);
- data val, buffer;
- pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer);
- clock_t time;
- for(i = 1; i <= splits; ++i){
- time=clock();
- pthread_join(load_thread, 0);
- val = buffer;
- normalize_data_rows(val);
-
- num = (i+1)*m/splits - i*m/splits;
- char **part = paths+(i*m/splits);
- if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer);
-
- fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time));
- matrix pred = network_predict_data(net, val);
- int j, k;
- for(j = 0; j < pred.rows; ++j){
- for(k = 0; k < pred.cols; k += 5){
- if (pred.vals[j][k] > .005){
- int index = k/5;
- int r = index/7;
- int c = index%7;
- float y = (32.*(r + pred.vals[j][k+1]))/224.;
- float x = (32.*(c + pred.vals[j][k+2]))/224.;
- float h = (256.*(pred.vals[j][k+3]))/224.;
- float w = (256.*(pred.vals[j][k+4]))/224.;
- printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w);
- }
- }
- }
-
- time=clock();
- free_data(val);
- }
-}
-/*
-
-void train_imagenet_distributed(char *address)
-{
- float avg_loss = 1;
- srand(time(0));
- network net = parse_network_cfg("cfg/net.cfg");
- set_learning_network(&net, 0, 1, 0);
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = net.batch;
- int i = 0;
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
- list *plist = get_paths("/data/imagenet/cls.train.list");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- clock_t time;
- data train, buffer;
- pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
- while(1){
- i += 1;
-
- time=clock();
- client_update(net, address);
- printf("Updated: %lf seconds\n", sec(clock()-time));
-
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- normalize_data_rows(train);
- load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
-
- float loss = train_network(net, train);
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
- free_data(train);
- }
-}
-*/
-
-void train_imagenet(char *cfgfile)
-{
- float avg_loss = 1;
- srand(time(0));
- network net = parse_network_cfg(cfgfile);
- //test_learn_bias(*(convolutional_layer *)net.layers[1]);
- //set_learning_network(&net, net.learning_rate, 0, net.decay);
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = 1024;
- int i = net.seen/imgs;
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
- list *plist = get_paths("/data/imagenet/cls.train.list");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- clock_t time;
- pthread_t load_thread;
- data train;
- data buffer;
- load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
- while(1){
- ++i;
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- net.seen += imgs;
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
- free_data(train);
- if(i%100==0){
- char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/vgg_%d.cfg", i);
- save_network(net, buff);
- }
- }
-}
-
-void validate_imagenet(char *filename)
-{
- int i = 0;
- network net = parse_network_cfg(filename);
- srand(time(0));
-
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
-
- list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
- char **paths = (char **)list_to_array(plist);
- int m = plist->size;
- free_list(plist);
-
- clock_t time;
- float avg_acc = 0;
- float avg_top5 = 0;
- int splits = 50;
- int num = (i+1)*m/splits - i*m/splits;
-
- data val, buffer;
- pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
- for(i = 1; i <= splits; ++i){
- time=clock();
-
- pthread_join(load_thread, 0);
- val = buffer;
- //normalize_data_rows(val);
-
- num = (i+1)*m/splits - i*m/splits;
- char **part = paths+(i*m/splits);
- if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
- printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
-
- time=clock();
- float *acc = network_accuracies(net, val);
- avg_acc += acc[0];
- avg_top5 += acc[1];
- printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
- free_data(val);
- }
-}
-
-void test_detection(char *cfgfile)
-{
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- srand(2222222);
- clock_t time;
- char filename[256];
- while(1){
- fgets(filename, 256, stdin);
- strtok(filename, "\n");
- image im = load_image_color(filename, 224, 224);
- z_normalize_image(im);
- printf("%d %d %d\n", im.h, im.w, im.c);
- float *X = im.data;
- time=clock();
- float *predictions = network_predict(net, X);
- printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
- draw_detection(im, predictions, 7);
- free_image(im);
- }
-}
-
-void test_init(char *cfgfile)
-{
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- srand(2222222);
- int i = 0;
- char *filename = "data/test.jpg";
-
- image im = load_image_color(filename, 256, 256);
- //z_normalize_image(im);
- translate_image(im, -128);
- scale_image(im, 1/128.);
- float *X = im.data;
- forward_network(net, X, 0, 1);
- for(i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- image output = get_convolutional_image(layer);
- int size = output.h*output.w*output.c;
- float v = variance_array(layer.output, size);
- float m = mean_array(layer.output, size);
- printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- int size = layer.outputs;
- float v = variance_array(layer.output, size);
- float m = mean_array(layer.output, size);
- printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
- }
- }
- free_image(im);
-}
-void test_dog(char *cfgfile)
-{
- image im = load_image_color("data/dog.jpg", 224, 224);
- translate_image(im, -128);
- print_image(im);
- float *X = im.data;
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- float *predictions = network_predict(net, X);
- image crop = get_network_image_layer(net, 0);
- //show_image(crop, "cropped");
- // print_image(crop);
- //show_image(im, "orig");
- float * inter = get_network_output(net);
- pm(1000, 1, inter);
- //cvWaitKey(0);
-}
-
-void test_imagenet(char *cfgfile)
-{
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- //imgs=1;
- srand(2222222);
- int i = 0;
- char **names = get_labels("cfg/shortnames.txt");
- clock_t time;
- char filename[256];
- int indexes[10];
- while(1){
- fgets(filename, 256, stdin);
- strtok(filename, "\n");
- image im = load_image_color(filename, 256, 256);
- translate_image(im, -128);
- //scale_image(im, 1/128.);
- printf("%d %d %d\n", im.h, im.w, im.c);
- float *X = im.data;
- time=clock();
- float *predictions = network_predict(net, X);
- top_predictions(net, 10, indexes);
- printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
- for(i = 0; i < 10; ++i){
- int index = indexes[i];
- printf("%s: %f\n", names[index], predictions[index]);
- }
- free_image(im);
- }
-}
-
-void test_visualize(char *filename)
-{
- network net = parse_network_cfg(filename);
- visualize_network(net);
- cvWaitKey(0);
-}
-
-void test_cifar10(char *cfgfile)
-{
- network net = parse_network_cfg(cfgfile);
- data test = load_cifar10_data("data/cifar10/test_batch.bin");
- clock_t start = clock(), end;
- float test_acc = network_accuracy_multi(net, test, 10);
- end = clock();
- printf("%f in %f Sec\n", test_acc, sec(end-start));
- //visualize_network(net);
- //cvWaitKey(0);
-}
-
-void train_cifar10(char *cfgfile)
-{
- srand(555555);
- srand(time(0));
- network net = parse_network_cfg(cfgfile);
- data test = load_cifar10_data("data/cifar10/test_batch.bin");
- int count = 0;
- int iters = 50000/net.batch;
- data train = load_all_cifar10();
- while(++count <= 10000){
- clock_t time = clock();
- float loss = train_network_sgd(net, train, iters);
-
- if(count%10 == 0){
- float test_acc = network_accuracy(net, test);
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
- char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
- save_network(net, buff);
- }else{
- printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
- }
-
- }
- free_data(train);
-}
-
-void compare_nist(char *p1,char *p2)
-{
- srand(222222);
- network n1 = parse_network_cfg(p1);
- network n2 = parse_network_cfg(p2);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- normalize_data_rows(test);
- compare_networks(n1, n2, test);
-}
-
-void test_nist(char *path)
-{
- srand(222222);
- network net = parse_network_cfg(path);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- normalize_data_rows(test);
- clock_t start = clock(), end;
- float test_acc = network_accuracy(net, test);
- end = clock();
- printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
-}
-
-void train_nist(char *cfgfile)
-{
- srand(222222);
- // srand(time(0));
- data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- network net = parse_network_cfg(cfgfile);
- int count = 0;
- int iters = 6000/net.batch + 1;
- while(++count <= 100){
- clock_t start = clock(), end;
- normalize_data_rows(train);
- normalize_data_rows(test);
- float loss = train_network_sgd(net, train, iters);
- float test_acc = 0;
- if(count%1 == 0) test_acc = network_accuracy(net, test);
- end = clock();
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
- }
- free_data(train);
- free_data(test);
- char buff[256];
- sprintf(buff, "%s.trained", cfgfile);
- save_network(net, buff);
-}
-
-/*
- void train_nist_distributed(char *address)
- {
- srand(time(0));
- network net = parse_network_cfg("cfg/nist.client");
- data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
-//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-normalize_data_rows(train);
-//normalize_data_rows(test);
-int count = 0;
-int iters = 50000/net.batch;
-iters = 1000/net.batch + 1;
-while(++count <= 2000){
-clock_t start = clock(), end;
-float loss = train_network_sgd(net, train, iters);
-client_update(net, address);
-end = clock();
-//float test_acc = network_accuracy_gpu(net, test);
-//float test_acc = 0;
-printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
-}
-}
- */
-
-void test_ensemble()
-{
- int i;
- srand(888888);
- data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
- normalize_data_rows(d);
- data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
- normalize_data_rows(test);
- data train = d;
- // data *split = split_data(d, 1, 10);
- // data train = split[0];
- // data test = split[1];
- matrix prediction = make_matrix(test.y.rows, test.y.cols);
- int n = 30;
- for(i = 0; i < n; ++i){
- int count = 0;
- float lr = .0005;
- float momentum = .9;
- float decay = .01;
- network net = parse_network_cfg("nist.cfg");
- while(++count <= 15){
- float acc = train_network_sgd(net, train, train.X.rows);
- printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
- lr /= 2;
- }
- matrix partial = network_predict_data(net, test);
- float acc = matrix_topk_accuracy(test.y, partial,1);
- printf("Model Accuracy: %lf\n", acc);
- matrix_add_matrix(partial, prediction);
- acc = matrix_topk_accuracy(test.y, prediction,1);
- printf("Current Ensemble Accuracy: %lf\n", acc);
- free_matrix(partial);
- }
- float acc = matrix_topk_accuracy(test.y, prediction,1);
- printf("Full Ensemble Accuracy: %lf\n", acc);
-}
-
-void visualize_cat()
-{
- network net = parse_network_cfg("cfg/voc_imagenet.cfg");
- image im = load_image_color("data/cat.png", 0, 0);
- printf("Processing %dx%d image\n", im.h, im.w);
- resize_network(net, im.h, im.w, im.c);
- forward_network(net, im.data, 0, 0);
-
- visualize_network(net);
- cvWaitKey(0);
-}
-
-#ifdef GPU
-void test_convolutional_layer()
-{
- network net = parse_network_cfg("cfg/nist_conv.cfg");
- int size = get_network_input_size(net);
- float *in = calloc(size, sizeof(float));
- int i;
- for(i = 0; i < size; ++i) in[i] = rand_normal();
- float *in_gpu = cuda_make_array(in, size);
- convolutional_layer layer = *(convolutional_layer *)net.layers[0];
- int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch;
- cuda_compare(layer.output_gpu, layer.output, out_size, "nothing");
- cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases");
- cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters");
- bias_output(layer);
- bias_output_gpu(layer);
- cuda_compare(layer.output_gpu, layer.output, out_size, "biased output");
-}
-#endif
-
-void test_correct_nist()
-{
- network net = parse_network_cfg("cfg/nist_conv.cfg");
- srand(222222);
- net = parse_network_cfg("cfg/nist_conv.cfg");
- data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- normalize_data_rows(train);
- normalize_data_rows(test);
- int count = 0;
- int iters = 1000/net.batch;
-
- while(++count <= 5){
- clock_t start = clock(), end;
- float loss = train_network_sgd(net, train, iters);
- end = clock();
- float test_acc = network_accuracy(net, test);
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
- }
- save_network(net, "cfg/nist_gpu.cfg");
-
- gpu_index = -1;
- count = 0;
- srand(222222);
- net = parse_network_cfg("cfg/nist_conv.cfg");
- while(++count <= 5){
- clock_t start = clock(), end;
- float loss = train_network_sgd(net, train, iters);
- end = clock();
- float test_acc = network_accuracy(net, test);
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
- }
- save_network(net, "cfg/nist_cpu.cfg");
-}
-
-void test_correct_alexnet()
-{
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
- list *plist = get_paths("/data/imagenet/cls.train.list");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- clock_t time;
- int count = 0;
- network net;
-
- srand(222222);
- net = parse_network_cfg("cfg/net.cfg");
- int imgs = net.batch;
-
- count = 0;
- while(++count <= 5){
- time=clock();
- data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
- normalize_data_rows(train);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
- free_data(train);
- }
-
- gpu_index = -1;
- count = 0;
- srand(222222);
- net = parse_network_cfg("cfg/net.cfg");
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- while(++count <= 5){
- time=clock();
- data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
- normalize_data_rows(train);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
- free_data(train);
- }
-}
-
-/*
- void run_server()
- {
- srand(time(0));
- network net = parse_network_cfg("cfg/net.cfg");
- set_batch_network(&net, 1);
- server_update(net);
- }
-
- void test_client()
- {
- network net = parse_network_cfg("cfg/alexnet.client");
- clock_t time=clock();
- client_update(net, "localhost");
- printf("1\n");
- client_update(net, "localhost");
- printf("2\n");
- client_update(net, "localhost");
- printf("3\n");
- printf("Transfered: %lf seconds\n", sec(clock()-time));
- }
- */
+extern void run_imagenet(int argc, char **argv);
+extern void run_detection(int argc, char **argv);
+extern void run_captcha(int argc, char **argv);
void del_arg(int argc, char **argv, int index)
{
int i;
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
+ argv[i] = 0;
}
int find_arg(int argc, char* argv[], char *arg)
{
int i;
- for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
- del_arg(argc, argv, i);
- return 1;
+ for(i = 0; i < argc; ++i) {
+ if(!argv[i]) continue;
+ if(0==strcmp(argv[i], arg)) {
+ del_arg(argc, argv, i);
+ return 1;
+ }
}
return 0;
}
@@ -700,6 +37,7 @@
{
int i;
for(i = 0; i < argc-1; ++i){
+ if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)){
def = atoi(argv[i+1]);
del_arg(argc, argv, i);
@@ -710,6 +48,48 @@
return def;
}
+void change_rate(char *filename, float scale, float add)
+{
+ // Ready for some weird shit??
+ FILE *fp = fopen(filename, "r+b");
+ if(!fp) file_error(filename);
+ float rate = 0;
+ fread(&rate, sizeof(float), 1, fp);
+ printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add);
+ rate = rate*scale + add;
+ fseek(fp, 0, SEEK_SET);
+ fwrite(&rate, sizeof(float), 1, fp);
+ fclose(fp);
+}
+
+void partial(char *cfgfile, char *weightfile, char *outfile, int max)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights_upto(&net, weightfile, max);
+ }
+ save_weights(net, outfile);
+}
+
+void convert(char *cfgfile, char *outfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ save_network(net, outfile);
+}
+
+void visualize(char *cfgfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ visualize_network(net);
+ cvWaitKey(0);
+}
+
int main(int argc, char **argv)
{
//test_convolutional_layer();
@@ -728,38 +108,23 @@
}
#endif
- if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
- else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
- //else if(0==strcmp(argv[1], "server")) run_server();
-
-#ifdef GPU
- else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
-#endif
-
- else if(argc < 3){
- fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
- return 0;
+ if(0==strcmp(argv[1], "imagenet")){
+ run_imagenet(argc, argv);
+ } else if (0 == strcmp(argv[1], "detection")){
+ run_detection(argc, argv);
+ } else if (0 == strcmp(argv[1], "captcha")){
+ run_captcha(argc, argv);
+ } else if (0 == strcmp(argv[1], "change")){
+ change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
+ } else if (0 == strcmp(argv[1], "convert")){
+ convert(argv[2], argv[3], (argc > 4) ? argv[4] : 0);
+ } else if (0 == strcmp(argv[1], "partial")){
+ partial(argv[2], argv[3], argv[4], atoi(argv[5]));
+ } else if (0 == strcmp(argv[1], "visualize")){
+ visualize(argv[2], (argc > 3) ? argv[3] : 0);
+ } else {
+ fprintf(stderr, "Not an option: %s\n", argv[1]);
}
- else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
- else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]);
- else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]);
- else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
- else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
- else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
- else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
- //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
- else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
- else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
- else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
- else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
- else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
- else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
- else if(argc < 4){
- fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
- return 0;
- }
- else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
- fprintf(stderr, "Success!\n");
return 0;
}
--
Gitblit v1.10.0