From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/network.c |  409 +++++++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 321 insertions(+), 88 deletions(-)

diff --git a/src/network.c b/src/network.c
index 3761bf9..b60f059 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,4 +1,5 @@
 #include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
@@ -7,11 +8,46 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "detection_layer.h"
 #include "maxpool_layer.h"
+#include "cost_layer.h"
 #include "normalization_layer.h"
+#include "freeweight_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 
+char *get_layer_string(LAYER_TYPE a)
+{
+    switch(a){
+        case CONVOLUTIONAL:
+            return "convolutional";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
+        case CONNECTED:
+            return "connected";
+        case MAXPOOL:
+            return "maxpool";
+        case SOFTMAX:
+            return "softmax";
+        case DETECTION:
+            return "detection";
+        case NORMALIZATION:
+            return "normalization";
+        case DROPOUT:
+            return "dropout";
+        case FREEWEIGHT:
+            return "freeweight";
+        case CROP:
+            return "crop";
+        case COST:
+            return "cost";
+        default:
+            break;
+    }
+    return "none";
+}
+
 network make_network(int n, int batch)
 {
     network net;
@@ -21,55 +57,15 @@
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
     net.output = 0;
+    net.seen = 0;
     #ifdef GPU
-    net.input_cl = 0;
+    net.input_gpu = calloc(1, sizeof(float *));
+    net.truth_gpu = calloc(1, sizeof(float *));
     #endif
     return net;
 }
 
-#ifdef GPU
-void forward_network_gpu(network net, cl_mem input_cl, int train)
-{
-    int i;
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input_cl);
-            input_cl = layer.output_cl;
-        }
-        /*
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input, train);
-            input = layer.output;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == CROP){
-            crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
-        }
-        */
-    }
-}
-
-#endif
-
-void forward_network(network net, float *input, int train)
+void forward_network(network net, float *input, float *truth, int train)
 {
     int i;
     for(i = 0; i < net.n; ++i){
@@ -78,6 +74,16 @@
             forward_convolutional_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == DETECTION){
+            detection_layer layer = *(detection_layer *)net.layers[i];
+            forward_detection_layer(layer, input, truth);
+            input = layer.output;
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             forward_connected_layer(layer, input);
@@ -85,9 +91,13 @@
         }
         else if(net.types[i] == CROP){
             crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer(layer, input);
+            forward_crop_layer(layer, train, input);
             input = layer.output;
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            forward_cost_layer(layer, input, truth);
+        }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             forward_softmax_layer(layer, input);
@@ -107,7 +117,16 @@
             if(!train) continue;
             dropout_layer layer = *(dropout_layer *)net.layers[i];
             forward_dropout_layer(layer, input);
+            input = layer.output;
         }
+        else if(net.types[i] == FREEWEIGHT){
+            if(!train) continue;
+            //freeweight_layer layer = *(freeweight_layer *)net.layers[i];
+            //forward_freeweight_layer(layer, input);
+        }
+        //char buff[256];
+        //sprintf(buff, "layer %d", i);
+        //cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
     }
 }
 
@@ -119,14 +138,9 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer(layer);
         }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == NORMALIZATION){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer(layer);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
@@ -140,17 +154,29 @@
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.output;
     } else if(net.types[i] == DROPOUT){
+        dropout_layer layer = *(dropout_layer *)net.layers[i];
+        return layer.output;
+    } else if(net.types[i] == FREEWEIGHT){
         return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == NORMALIZATION){
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return layer.output;
@@ -159,7 +185,9 @@
 }
 float *get_network_output(network net)
 {
-    return get_network_output_layer(net, net.n-1);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    return get_network_output_layer(net, i);
 }
 
 float *get_network_delta_layer(network net, int i)
@@ -167,13 +195,22 @@
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.delta;
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == DROPOUT){
+        if(i == 0) return 0;
+        return get_network_delta_layer(net, i-1);
+    } else if(net.types[i] == FREEWEIGHT){
         return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
@@ -182,6 +219,14 @@
     return 0;
 }
 
+float get_network_cost(network net)
+{
+    if(net.types[net.n-1] == COST){
+        return ((cost_layer *)net.layers[net.n-1])->output[0];
+    }
+    return 0;
+}
+
 float *get_network_delta(network net)
 {
     return get_network_delta_layer(net, net.n-1);
@@ -212,9 +257,8 @@
     return max_index(out, k);
 }
 
-float backward_network(network net, float *input, float *truth)
+void backward_network(network net, float *input, float *truth)
 {
-    float error = calculate_error_network(net, truth);
     int i;
     float *prev_input;
     float *prev_delta;
@@ -226,13 +270,25 @@
             prev_input = get_network_output_layer(net, i-1);
             prev_delta = get_network_delta_layer(net, i-1);
         }
+
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer(layer, prev_delta);
+            backward_convolutional_layer(layer, prev_input, prev_delta);
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_maxpool_layer(layer, prev_delta);
+        }
+        else if(net.types[i] == DROPOUT){
+            dropout_layer layer = *(dropout_layer *)net.layers[i];
+            backward_dropout_layer(layer, prev_delta);
+        }
+        else if(net.types[i] == DETECTION){
+            detection_layer layer = *(detection_layer *)net.layers[i];
+            backward_detection_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
@@ -240,23 +296,28 @@
         }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_softmax_layer(layer, prev_delta);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             backward_connected_layer(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer(layer, prev_input, prev_delta);
+        }
     }
-    return error;
 }
 
 float train_network_datum(network net, float *x, float *y)
 {
-    forward_network(net, x, 1);
-    //int class = get_predicted_class_network(net);
-    float error = backward_network(net, x, y);
+    #ifdef GPU
+    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+    #endif
+    forward_network(net, x, y, 1);
+    backward_network(net, x, y);
+    float error = get_network_cost(net);
     update_network(net);
-    //return (y[class]?1:0);
     return error;
 }
 
@@ -269,7 +330,7 @@
     int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        get_batch(d, batch, X, y);
+        get_random_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
     }
@@ -277,6 +338,26 @@
     free(y);
     return (float)sum/(n*batch);
 }
+
+float train_network(network net, data d)
+{
+    int batch = net.batch;
+    int n = d.X.rows / batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -287,37 +368,93 @@
             int index = rand()%d.X.rows;
             float *x = d.X.vals[index];
             float *y = d.y.vals[index];
-            forward_network(net, x, 1);
-            sum += backward_network(net, x, y);
+            forward_network(net, x, y, 1);
+            backward_network(net, x, y);
+            sum += get_network_cost(net);
         }
         update_network(net);
     }
     return (float)sum/(n*batch);
 }
 
-
-void train_network(network net, data d)
+void set_learning_network(network *net, float rate, float momentum, float decay)
 {
     int i;
-    int correct = 0;
-    for(i = 0; i < d.X.rows; ++i){
-        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
-        if(i%100 == 0){
-            visualize_network(net);
-            cvWaitKey(10);
+    net->learning_rate=rate;
+    net->momentum = momentum;
+    net->decay = decay;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+            layer->learning_rate=rate;
+            layer->momentum = momentum;
+            layer->decay = decay;
+        }
+        else if(net->types[i] == CONNECTED){
+            connected_layer *layer = (connected_layer *)net->layers[i];
+            layer->learning_rate=rate;
+            layer->momentum = momentum;
+            layer->decay = decay;
         }
     }
-    visualize_network(net);
-    cvWaitKey(100);
-    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
+void set_batch_network(network *net, int b)
+{
+    net->batch = b;
+    int i;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+            layer->batch = b;
+        }else if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == CONNECTED){
+            connected_layer *layer = (connected_layer *)net->layers[i];
+            layer->batch = b;
+        } else if(net->types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *) net->layers[i];
+            layer->batch = b;
+        } else if(net->types[i] == DETECTION){
+            detection_layer *layer = (detection_layer *) net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == FREEWEIGHT){
+            freeweight_layer *layer = (freeweight_layer *) net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == SOFTMAX){
+            softmax_layer *layer = (softmax_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == COST){
+            cost_layer *layer = (cost_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == CROP){
+            crop_layer *layer = (crop_layer *)net->layers[i];
+            layer->batch = b;
+        }
+    }
+}
+
+
 int get_network_input_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
     }
+    if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
@@ -328,11 +465,22 @@
     } else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *) net.layers[i];
+        return layer.inputs;
+    } else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.h*layer.w;
+    }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
     }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    printf("Can't find input size\n");
     return 0;
 }
 
@@ -343,22 +491,41 @@
         image output = get_convolutional_image(layer);
         return output.h*output.w*output.c;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        image output = get_deconvolutional_image(layer);
+        return output.h*output.w*output.c;
+    }
+    else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return get_detection_layer_output_size(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         image output = get_maxpool_image(layer);
         return output.h*output.w*output.c;
     }
+     else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.crop_height*layer.crop_width;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
-    } else if(net.types[i] == DROPOUT){
+    }
+    else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
     }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
+    }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    printf("Can't find output size\n");
     return 0;
 }
 
@@ -368,21 +535,31 @@
     for (i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            resize_convolutional_layer(layer, h, w, c);
+            resize_convolutional_layer(layer, h, w);
             image output = get_convolutional_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+            resize_deconvolutional_layer(layer, h, w);
+            image output = get_deconvolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
         }else if(net.types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            resize_maxpool_layer(layer, h, w, c);
+            resize_maxpool_layer(layer, h, w);
             image output = get_maxpool_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        }else if(net.types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *)net.layers[i];
+            resize_dropout_layer(layer, h*w*c);
         }else if(net.types[i] == NORMALIZATION){
             normalization_layer *layer = (normalization_layer *)net.layers[i];
-            resize_normalization_layer(layer, h, w, c);
+            resize_normalization_layer(layer, h, w);
             image output = get_normalization_image(*layer);
             h = output.h;
             w = output.w;
@@ -396,7 +573,8 @@
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
     return get_network_output_size_layer(net, i);
 }
 
@@ -411,6 +589,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return get_convolutional_image(layer);
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return get_deconvolutional_image(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
@@ -419,6 +601,9 @@
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return get_normalization_image(layer);
     }
+    else if(net.types[i] == DROPOUT){
+        return get_network_image_layer(net, i-1);
+    }
     else if(net.types[i] == CROP){
         crop_layer layer = *(crop_layer *)net.layers[i];
         return get_crop_image(layer);
@@ -441,7 +626,7 @@
     image *prev = 0;
     int i;
     char buff[256];
-    show_image(get_network_image_layer(net, 0), "Crop");
+    //show_image(get_network_image_layer(net, 0), "Crop");
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
@@ -455,9 +640,21 @@
     } 
 }
 
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input, 0);
+    #ifdef GPU
+    if(gpu_index >= 0)  return network_predict_gpu(net, input);
+    #endif
+
+    forward_network(net, input, 0, 0);
     float *out = get_network_output(net);
     return out;
 }
@@ -492,7 +689,7 @@
     int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
     for(i = 0; i < test.X.rows; i += net.batch){
         for(b = 0; b < net.batch; ++b){
             if(i+b == test.X.rows) break;
@@ -554,18 +751,54 @@
     }
 }
 
+void compare_networks(network n1, network n2, data test)
+{
+    matrix g1 = network_predict_data(n1, test);
+    matrix g2 = network_predict_data(n2, test);
+    int i;
+    int a,b,c,d;
+    a = b = c = d = 0;
+    for(i = 0; i < g1.rows; ++i){
+        int truth = max_index(test.y.vals[i], test.y.cols);
+        int p1 = max_index(g1.vals[i], g1.cols);
+        int p2 = max_index(g2.vals[i], g2.cols);
+        if(p1 == truth){
+            if(p2 == truth) ++d;
+            else ++c;
+        }else{
+            if(p2 == truth) ++b;
+            else ++a;
+        }
+    }
+    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+    float num = pow((abs(b - c) - 1.), 2.);
+    float den = b + c;
+    printf("%f\n", num/den); 
+}
+
 float network_accuracy(network net, data d)
 {
     matrix guess = network_predict_data(net, d);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
     free_matrix(guess);
     return acc;
 }
 
+float *network_accuracies(network net, data d)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess,1);
+    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    free_matrix(guess);
+    return acc;
+}
+
+
 float network_accuracy_multi(network net, data d, int n)
 {
     matrix guess = network_predict_data_multi(net, d, n);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
     free_matrix(guess);
     return acc;
 }

--
Gitblit v1.10.0