From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/network.c |  105 ++++++++++++++++++++++++++++++++++++++++++----------
 1 files changed, 85 insertions(+), 20 deletions(-)

diff --git a/src/network.c b/src/network.c
index eb39054..b60f059 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,8 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "detection_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
@@ -20,12 +22,16 @@
     switch(a){
         case CONVOLUTIONAL:
             return "convolutional";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
         case CONNECTED:
             return "connected";
         case MAXPOOL:
             return "maxpool";
         case SOFTMAX:
             return "softmax";
+        case DETECTION:
+            return "detection";
         case NORMALIZATION:
             return "normalization";
         case DROPOUT:
@@ -42,8 +48,6 @@
     return "none";
 }
 
-
-
 network make_network(int n, int batch)
 {
     network net;
@@ -61,7 +65,6 @@
     return net;
 }
 
-
 void forward_network(network net, float *input, float *truth, int train)
 {
     int i;
@@ -71,6 +74,16 @@
             forward_convolutional_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == DETECTION){
+            detection_layer layer = *(detection_layer *)net.layers[i];
+            forward_detection_layer(layer, input, truth);
+            input = layer.output;
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             forward_connected_layer(layer, input);
@@ -78,7 +91,7 @@
         }
         else if(net.types[i] == CROP){
             crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer(layer, input);
+            forward_crop_layer(layer, train, input);
             input = layer.output;
         }
         else if(net.types[i] == COST){
@@ -125,18 +138,12 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer(layer);
         }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == NORMALIZATION){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer(layer);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            //secret_update_connected_layer((connected_layer *)net.layers[i]);
             update_connected_layer(layer);
         }
     }
@@ -147,9 +154,15 @@
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.output;
@@ -182,12 +195,18 @@
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.delta;
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == DROPOUT){
         if(i == 0) return 0;
         return get_network_delta_layer(net, i-1);
@@ -238,7 +257,7 @@
     return max_index(out, k);
 }
 
-void backward_network(network net, float *input)
+void backward_network(network net, float *input, float *truth)
 {
     int i;
     float *prev_input;
@@ -251,9 +270,13 @@
             prev_input = get_network_output_layer(net, i-1);
             prev_delta = get_network_delta_layer(net, i-1);
         }
+
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             backward_convolutional_layer(layer, prev_input, prev_delta);
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -263,6 +286,10 @@
             dropout_layer layer = *(dropout_layer *)net.layers[i];
             backward_dropout_layer(layer, prev_delta);
         }
+        else if(net.types[i] == DETECTION){
+            detection_layer layer = *(detection_layer *)net.layers[i];
+            backward_detection_layer(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
             if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
@@ -288,7 +315,7 @@
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
     #endif
     forward_network(net, x, y, 1);
-    backward_network(net, x);
+    backward_network(net, x, y);
     float error = get_network_cost(net);
     update_network(net);
     return error;
@@ -342,7 +369,7 @@
             float *x = d.X.vals[index];
             float *y = d.y.vals[index];
             forward_network(net, x, y, 1);
-            backward_network(net, x);
+            backward_network(net, x, y);
             sum += get_network_cost(net);
         }
         update_network(net);
@@ -372,7 +399,6 @@
     }
 }
 
-
 void set_batch_network(network *net, int b)
 {
     net->batch = b;
@@ -381,6 +407,9 @@
         if(net->types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net->layers[i];
             layer->batch = b;
+        }else if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
+            layer->batch = b;
         }
         else if(net->types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net->layers[i];
@@ -392,6 +421,9 @@
         } else if(net->types[i] == DROPOUT){
             dropout_layer *layer = (dropout_layer *) net->layers[i];
             layer->batch = b;
+        } else if(net->types[i] == DETECTION){
+            detection_layer *layer = (detection_layer *) net->layers[i];
+            layer->batch = b;
         }
         else if(net->types[i] == FREEWEIGHT){
             freeweight_layer *layer = (freeweight_layer *) net->layers[i];
@@ -419,6 +451,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
     }
+    if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
@@ -429,6 +465,9 @@
     } else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
+    } else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *) net.layers[i];
+        return layer.inputs;
     } else if(net.types[i] == CROP){
         crop_layer layer = *(crop_layer *) net.layers[i];
         return layer.c*layer.h*layer.w;
@@ -452,6 +491,15 @@
         image output = get_convolutional_image(layer);
         return output.h*output.w*output.c;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        image output = get_deconvolutional_image(layer);
+        return output.h*output.w*output.c;
+    }
+    else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return get_detection_layer_output_size(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         image output = get_maxpool_image(layer);
@@ -487,21 +535,31 @@
     for (i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            resize_convolutional_layer(layer, h, w, c);
+            resize_convolutional_layer(layer, h, w);
             image output = get_convolutional_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+            resize_deconvolutional_layer(layer, h, w);
+            image output = get_deconvolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
         }else if(net.types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            resize_maxpool_layer(layer, h, w, c);
+            resize_maxpool_layer(layer, h, w);
             image output = get_maxpool_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        }else if(net.types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *)net.layers[i];
+            resize_dropout_layer(layer, h*w*c);
         }else if(net.types[i] == NORMALIZATION){
             normalization_layer *layer = (normalization_layer *)net.layers[i];
-            resize_normalization_layer(layer, h, w, c);
+            resize_normalization_layer(layer, h, w);
             image output = get_normalization_image(*layer);
             h = output.h;
             w = output.w;
@@ -531,6 +589,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return get_convolutional_image(layer);
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return get_deconvolutional_image(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
@@ -539,6 +601,9 @@
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return get_normalization_image(layer);
     }
+    else if(net.types[i] == DROPOUT){
+        return get_network_image_layer(net, i-1);
+    }
     else if(net.types[i] == CROP){
         crop_layer layer = *(crop_layer *)net.layers[i];
         return get_crop_image(layer);

--
Gitblit v1.10.0