From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic
---
src/network.c | 232 +++++++++++++++++++++++++++++++++++++++++++--------------
1 files changed, 175 insertions(+), 57 deletions(-)
diff --git a/src/network.c b/src/network.c
index f451fd9..b60f059 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,8 @@
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "detection_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
@@ -15,6 +17,37 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
+char *get_layer_string(LAYER_TYPE a)
+{
+ switch(a){
+ case CONVOLUTIONAL:
+ return "convolutional";
+ case DECONVOLUTIONAL:
+ return "deconvolutional";
+ case CONNECTED:
+ return "connected";
+ case MAXPOOL:
+ return "maxpool";
+ case SOFTMAX:
+ return "softmax";
+ case DETECTION:
+ return "detection";
+ case NORMALIZATION:
+ return "normalization";
+ case DROPOUT:
+ return "dropout";
+ case FREEWEIGHT:
+ return "freeweight";
+ case CROP:
+ return "crop";
+ case COST:
+ return "cost";
+ default:
+ break;
+ }
+ return "none";
+}
+
network make_network(int n, int batch)
{
network net;
@@ -24,14 +57,14 @@
net.types = calloc(net.n, sizeof(LAYER_TYPE));
net.outputs = 0;
net.output = 0;
+ net.seen = 0;
#ifdef GPU
- net.input_cl = calloc(1, sizeof(cl_mem));
- net.truth_cl = calloc(1, sizeof(cl_mem));
+ net.input_gpu = calloc(1, sizeof(float *));
+ net.truth_gpu = calloc(1, sizeof(float *));
#endif
return net;
}
-
void forward_network(network net, float *input, float *truth, int train)
{
int i;
@@ -41,6 +74,16 @@
forward_convolutional_layer(layer, input);
input = layer.output;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ forward_deconvolutional_layer(layer, input);
+ input = layer.output;
+ }
+ else if(net.types[i] == DETECTION){
+ detection_layer layer = *(detection_layer *)net.layers[i];
+ forward_detection_layer(layer, input, truth);
+ input = layer.output;
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer(layer, input);
@@ -48,7 +91,7 @@
}
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
- forward_crop_layer(layer, input);
+ forward_crop_layer(layer, train, input);
input = layer.output;
}
else if(net.types[i] == COST){
@@ -74,12 +117,16 @@
if(!train) continue;
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer(layer, input);
+ input = layer.output;
}
else if(net.types[i] == FREEWEIGHT){
if(!train) continue;
- freeweight_layer layer = *(freeweight_layer *)net.layers[i];
- forward_freeweight_layer(layer, input);
+ //freeweight_layer layer = *(freeweight_layer *)net.layers[i];
+ //forward_freeweight_layer(layer, input);
}
+ //char buff[256];
+ //sprintf(buff, "layer %d", i);
+ //cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
}
}
@@ -91,14 +138,9 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer(layer);
}
- else if(net.types[i] == MAXPOOL){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- }
- else if(net.types[i] == SOFTMAX){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- }
- else if(net.types[i] == NORMALIZATION){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ update_deconvolutional_layer(layer);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
@@ -112,14 +154,21 @@
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.output;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
+ } else if(net.types[i] == DETECTION){
+ detection_layer layer = *(detection_layer *)net.layers[i];
+ return layer.output;
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == DROPOUT){
- return get_network_output_layer(net, i-1);
+ dropout_layer layer = *(dropout_layer *)net.layers[i];
+ return layer.output;
} else if(net.types[i] == FREEWEIGHT){
return get_network_output_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
@@ -146,13 +195,20 @@
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta;
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.delta;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta;
+ } else if(net.types[i] == DETECTION){
+ detection_layer layer = *(detection_layer *)net.layers[i];
+ return layer.delta;
} else if(net.types[i] == DROPOUT){
+ if(i == 0) return 0;
return get_network_delta_layer(net, i-1);
} else if(net.types[i] == FREEWEIGHT){
return get_network_delta_layer(net, i-1);
@@ -201,7 +257,7 @@
return max_index(out, k);
}
-void backward_network(network net, float *input)
+void backward_network(network net, float *input, float *truth)
{
int i;
float *prev_input;
@@ -214,9 +270,13 @@
prev_input = get_network_output_layer(net, i-1);
prev_delta = get_network_delta_layer(net, i-1);
}
+
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
backward_convolutional_layer(layer, prev_input, prev_delta);
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ backward_deconvolutional_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -226,6 +286,10 @@
dropout_layer layer = *(dropout_layer *)net.layers[i];
backward_dropout_layer(layer, prev_delta);
}
+ else if(net.types[i] == DETECTION){
+ detection_layer layer = *(detection_layer *)net.layers[i];
+ backward_detection_layer(layer, prev_input, prev_delta);
+ }
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
@@ -245,17 +309,15 @@
}
}
-
-
-
float train_network_datum(network net, float *x, float *y)
{
+ #ifdef GPU
+ if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+ #endif
forward_network(net, x, y, 1);
- //int class = get_predicted_class_network(net);
- backward_network(net, x);
+ backward_network(net, x, y);
float error = get_network_cost(net);
update_network(net);
- //return (y[class]?1:0);
return error;
}
@@ -277,28 +339,10 @@
return (float)sum/(n*batch);
}
-float train_network_batch(network net, data d, int n)
-{
- int i,j;
- float sum = 0;
- int batch = 2;
- for(i = 0; i < n; ++i){
- for(j = 0; j < batch; ++j){
- int index = rand()%d.X.rows;
- float *x = d.X.vals[index];
- float *y = d.y.vals[index];
- forward_network(net, x, y, 1);
- backward_network(net, x);
- sum += get_network_cost(net);
- }
- update_network(net);
- }
- return (float)sum/(n*batch);
-}
-
-float train_network_data_cpu(network net, data d, int n)
+float train_network(network net, data d)
{
int batch = net.batch;
+ int n = d.X.rows / batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
@@ -314,20 +358,23 @@
return (float)sum/(n*batch);
}
-void train_network(network net, data d)
+float train_network_batch(network net, data d, int n)
{
- int i;
- int correct = 0;
- for(i = 0; i < d.X.rows; ++i){
- correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
- if(i%100 == 0){
- visualize_network(net);
- cvWaitKey(10);
+ int i,j;
+ float sum = 0;
+ int batch = 2;
+ for(i = 0; i < n; ++i){
+ for(j = 0; j < batch; ++j){
+ int index = rand()%d.X.rows;
+ float *x = d.X.vals[index];
+ float *y = d.y.vals[index];
+ forward_network(net, x, y, 1);
+ backward_network(net, x, y);
+ sum += get_network_cost(net);
}
+ update_network(net);
}
- visualize_network(net);
- cvWaitKey(100);
- fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
+ return (float)sum/(n*batch);
}
void set_learning_network(network *net, float rate, float momentum, float decay)
@@ -352,7 +399,6 @@
}
}
-
void set_batch_network(network *net, int b)
{
net->batch = b;
@@ -361,6 +407,9 @@
if(net->types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
layer->batch = b;
+ }else if(net->types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
+ layer->batch = b;
}
else if(net->types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net->layers[i];
@@ -372,6 +421,9 @@
} else if(net->types[i] == DROPOUT){
dropout_layer *layer = (dropout_layer *) net->layers[i];
layer->batch = b;
+ } else if(net->types[i] == DETECTION){
+ detection_layer *layer = (detection_layer *) net->layers[i];
+ layer->batch = b;
}
else if(net->types[i] == FREEWEIGHT){
freeweight_layer *layer = (freeweight_layer *) net->layers[i];
@@ -385,6 +437,10 @@
cost_layer *layer = (cost_layer *)net->layers[i];
layer->batch = b;
}
+ else if(net->types[i] == CROP){
+ crop_layer *layer = (crop_layer *)net->layers[i];
+ layer->batch = b;
+ }
}
}
@@ -395,6 +451,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
}
+ if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.h*layer.w*layer.c;
+ }
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
@@ -405,6 +465,9 @@
} else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
+ } else if(net.types[i] == DETECTION){
+ detection_layer layer = *(detection_layer *) net.layers[i];
+ return layer.inputs;
} else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.h*layer.w;
@@ -428,6 +491,15 @@
image output = get_convolutional_image(layer);
return output.h*output.w*output.c;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ image output = get_deconvolutional_image(layer);
+ return output.h*output.w*output.c;
+ }
+ else if(net.types[i] == DETECTION){
+ detection_layer layer = *(detection_layer *)net.layers[i];
+ return get_detection_layer_output_size(layer);
+ }
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
image output = get_maxpool_image(layer);
@@ -463,21 +535,31 @@
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
- resize_convolutional_layer(layer, h, w, c);
+ resize_convolutional_layer(layer, h, w);
image output = get_convolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+ resize_deconvolutional_layer(layer, h, w);
+ image output = get_deconvolutional_image(*layer);
+ h = output.h;
+ w = output.w;
+ c = output.c;
}else if(net.types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
- resize_maxpool_layer(layer, h, w, c);
+ resize_maxpool_layer(layer, h, w);
image output = get_maxpool_image(*layer);
h = output.h;
w = output.w;
c = output.c;
+ }else if(net.types[i] == DROPOUT){
+ dropout_layer *layer = (dropout_layer *)net.layers[i];
+ resize_dropout_layer(layer, h*w*c);
}else if(net.types[i] == NORMALIZATION){
normalization_layer *layer = (normalization_layer *)net.layers[i];
- resize_normalization_layer(layer, h, w, c);
+ resize_normalization_layer(layer, h, w);
image output = get_normalization_image(*layer);
h = output.h;
w = output.w;
@@ -507,6 +589,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return get_convolutional_image(layer);
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return get_deconvolutional_image(layer);
+ }
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return get_maxpool_image(layer);
@@ -515,6 +601,9 @@
normalization_layer layer = *(normalization_layer *)net.layers[i];
return get_normalization_image(layer);
}
+ else if(net.types[i] == DROPOUT){
+ return get_network_image_layer(net, i-1);
+ }
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
return get_crop_image(layer);
@@ -561,6 +650,10 @@
float *network_predict(network net, float *input)
{
+ #ifdef GPU
+ if(gpu_index >= 0) return network_predict_gpu(net, input);
+ #endif
+
forward_network(net, input, 0, 0);
float *out = get_network_output(net);
return out;
@@ -658,6 +751,31 @@
}
}
+void compare_networks(network n1, network n2, data test)
+{
+ matrix g1 = network_predict_data(n1, test);
+ matrix g2 = network_predict_data(n2, test);
+ int i;
+ int a,b,c,d;
+ a = b = c = d = 0;
+ for(i = 0; i < g1.rows; ++i){
+ int truth = max_index(test.y.vals[i], test.y.cols);
+ int p1 = max_index(g1.vals[i], g1.cols);
+ int p2 = max_index(g2.vals[i], g2.cols);
+ if(p1 == truth){
+ if(p2 == truth) ++d;
+ else ++c;
+ }else{
+ if(p2 == truth) ++b;
+ else ++a;
+ }
+ }
+ printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+ float num = pow((abs(b - c) - 1.), 2.);
+ float den = b + c;
+ printf("%f\n", num/den);
+}
+
float network_accuracy(network net, data d)
{
matrix guess = network_predict_data(net, d);
--
Gitblit v1.10.0