From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/network_kernels.cu |   60 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--
 1 files changed, 58 insertions(+), 2 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index de8f659..928c7f9 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -9,7 +9,9 @@
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "detection_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
@@ -20,6 +22,7 @@
 
 extern "C" float * get_network_output_gpu_layer(network net, int i);
 extern "C" float * get_network_delta_gpu_layer(network net, int i);
+float *get_network_output_gpu(network net);
 
 void forward_network_gpu(network net, float * input, float * truth, int train)
 {
@@ -31,6 +34,11 @@
             forward_convolutional_layer_gpu(layer, input);
             input = layer.output_gpu;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer_gpu(layer, input);
+            input = layer.output_gpu;
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             forward_cost_layer_gpu(layer, input, truth);
@@ -40,6 +48,11 @@
             forward_connected_layer_gpu(layer, input);
             input = layer.output_gpu;
         }
+        else if(net.types[i] == DETECTION){
+            detection_layer layer = *(detection_layer *)net.layers[i];
+            forward_detection_layer_gpu(layer, input, truth);
+            input = layer.output_gpu;
+        }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
             forward_maxpool_layer_gpu(layer, input);
@@ -61,11 +74,12 @@
             forward_crop_layer_gpu(layer, train, input);
             input = layer.output_gpu;
         }
+        //cudaDeviceSynchronize();
         //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
     }
 }
 
-void backward_network_gpu(network net, float * input)
+void backward_network_gpu(network net, float * input, float *truth)
 {
     int i;
     float * prev_input;
@@ -83,6 +97,10 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             backward_cost_layer_gpu(layer, prev_input, prev_delta);
@@ -91,6 +109,10 @@
             connected_layer layer = *(connected_layer *)net.layers[i];
             backward_connected_layer_gpu(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == DETECTION){
+            detection_layer layer = *(detection_layer *)net.layers[i];
+            backward_detection_layer_gpu(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
             backward_maxpool_layer_gpu(layer, prev_delta);
@@ -115,6 +137,10 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer_gpu(layer);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer_gpu(layer);
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             update_connected_layer_gpu(layer);
@@ -128,6 +154,14 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output_gpu;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output_gpu;
+    }
+    else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return layer.output_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output_gpu;
@@ -156,6 +190,14 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta_gpu;
     }
+    else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        return layer.delta_gpu;
+    }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta_gpu;
@@ -191,11 +233,15 @@
     forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
   //printf("forw %f\n", sec(clock() - time));
   //time = clock();
-    backward_network_gpu(net, *net.input_gpu);
+    backward_network_gpu(net, *net.input_gpu, *net.truth_gpu);
   //printf("back %f\n", sec(clock() - time));
   //time = clock();
     update_network_gpu(net);
     float error = get_network_cost(net);
+
+    //print_letters(y, 50);
+    //float *out = get_network_output_gpu(net);
+    //print_letters(out, 50);
   //printf("updt %f\n", sec(clock() - time));
   //time = clock();
     return error;
@@ -207,11 +253,21 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
         return layer.output;
     }
+    else if(net.types[i] == DETECTION){
+        detection_layer layer = *(detection_layer *)net.layers[i];
+        int outputs = get_detection_layer_output_size(layer);
+        cuda_pull_array(layer.output_gpu, layer.output, outputs*layer.batch);
+        return layer.output;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.output;

--
Gitblit v1.10.0