From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/parser.c |   55 +++++++++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 49 insertions(+), 6 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 3f94c80..7b1057e 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -13,6 +13,7 @@
 #include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
+#include "detection_layer.h"
 #include "freeweight_layer.h"
 #include "list.h"
 #include "option_list.h"
@@ -32,6 +33,7 @@
 int is_softmax(section *s);
 int is_crop(section *s);
 int is_cost(section *s);
+int is_detection(section *s);
 int is_normalization(section *s);
 list *read_cfg(char *filename);
 
@@ -74,7 +76,7 @@
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         learning_rate = option_find_float(options, "learning_rate", .001);
@@ -118,7 +120,7 @@
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     int pad = option_find_int(options, "pad",0);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         learning_rate = option_find_float(options, "learning_rate", .001);
@@ -159,7 +161,7 @@
     int input;
     float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         input = option_find_int(options, "input",1);
@@ -191,6 +193,7 @@
 softmax_layer *parse_softmax(list *options, network *net, int count)
 {
     int input;
+    int groups = option_find_int(options, "groups",1);
     if(count == 0){
         input = option_find_int(options, "input",1);
         net->batch = option_find_int(options, "batch",1);
@@ -198,7 +201,25 @@
     }else{
         input =  get_network_output_size_layer(*net, count-1);
     }
-    softmax_layer *layer = make_softmax_layer(net->batch, input);
+    softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
+    option_unused(options);
+    return layer;
+}
+
+detection_layer *parse_detection(list *options, network *net, int count)
+{
+    int input;
+    if(count == 0){
+        input = option_find_int(options, "input",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    int coords = option_find_int(options, "coords", 1);
+    int classes = option_find_int(options, "classes", 1);
+    int rescore = option_find_int(options, "rescore", 1);
+    detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
     option_unused(options);
     return layer;
 }
@@ -367,6 +388,10 @@
             cost_layer *layer = parse_cost(options, &net, count);
             net.types[count] = COST;
             net.layers[count] = layer;
+        }else if(is_detection(s)){
+            detection_layer *layer = parse_detection(options, &net, count);
+            net.types[count] = DETECTION;
+            net.layers[count] = layer;
         }else if(is_softmax(s)){
             softmax_layer *layer = parse_softmax(options, &net, count);
             net.types[count] = SOFTMAX;
@@ -409,6 +434,10 @@
 {
     return (strcmp(s->type, "[cost]")==0);
 }
+int is_detection(section *s)
+{
+    return (strcmp(s->type, "[detection]")==0);
+}
 int is_deconvolutional(section *s)
 {
     return (strcmp(s->type, "[deconv]")==0
@@ -683,6 +712,13 @@
     fprintf(fp, "\n");
 }
 
+void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
+{
+    fprintf(fp, "[detection]\n");
+    fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\n", l->classes, l->coords, l->rescore);
+    fprintf(fp, "\n");
+}
+
 void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
 {
     fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
@@ -739,7 +775,7 @@
     fclose(fp);
 }
 
-void load_weights(network *net, char *filename)
+void load_weights_upto(network *net, char *filename, int cutoff)
 {
     fprintf(stderr, "Loading weights from %s\n", filename);
     FILE *fp = fopen(filename, "r");
@@ -752,7 +788,7 @@
     set_learning_network(net, net->learning_rate, net->momentum, net->decay);
     
     int i;
-    for(i = 0; i < net->n; ++i){
+    for(i = 0; i < net->n && i < cutoff; ++i){
         if(net->types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *) net->layers[i];
             int num = layer.n*layer.c*layer.size*layer.size;
@@ -789,6 +825,11 @@
     fclose(fp);
 }
 
+void load_weights(network *net, char *filename)
+{
+    load_weights_upto(net, filename, net->n);
+}
+
 void save_network(network net, char *filename)
 {
     FILE *fp = fopen(filename, "w");
@@ -814,6 +855,8 @@
             print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
         else if(net.types[i] == SOFTMAX)
             print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DETECTION)
+            print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
         else if(net.types[i] == COST)
             print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
     }

--
Gitblit v1.10.0