From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/parser.c |  697 ++++++++++++++++++++++++++++++++++++++++++++++++++++-----
 1 files changed, 626 insertions(+), 71 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index b008882..7b1057e 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -4,11 +4,17 @@
 
 #include "parser.h"
 #include "activations.h"
+#include "crop_layer.h"
+#include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "detection_layer.h"
+#include "freeweight_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -19,9 +25,15 @@
 }section;
 
 int is_convolutional(section *s);
+int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
+int is_dropout(section *s);
+int is_freeweight(section *s);
 int is_softmax(section *s);
+int is_crop(section *s);
+int is_cost(section *s);
+int is_detection(section *s);
 int is_normalization(section *s);
 list *read_cfg(char *filename);
 
@@ -41,122 +53,287 @@
     free(s);
 }
 
-convolutional_layer *parse_convolutional(list *options, network net, int count)
+void parse_data(char *data, float *a, int n)
 {
     int i;
+    if(!data) return;
+    char *curr = data;
+    char *next = data;
+    int done = 0;
+    for(i = 0; i < n && !done; ++i){
+        while(*++next !='\0' && *next != ',');
+        if(*next == '\0') done = 1;
+        *next = '\0';
+        sscanf(curr, "%g", &a[i]);
+        curr = next+1;
+    }
+}
+
+deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
+{
     int h,w,c;
+    float learning_rate, momentum, decay;
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    if(count == 0){
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before deconvolutional layer must output image.");
+    }
+    deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    if(weights || biases) push_deconvolutional_layer(*layer);
+    #endif
+    option_unused(options);
+    return layer;
+}
+
+convolutional_layer *parse_convolutional(list *options, network *net, int count)
+{
+    int h,w,c;
+    float learning_rate, momentum, decay;
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     int pad = option_find_int(options, "pad",0);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride,pad,activation);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < n; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < c*n*size*size; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->filters[i]);
-            curr = next+1;
-        }
-    }
+    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    if(weights || biases) push_convolutional_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
 
-connected_layer *parse_connected(list *options, network net, int count)
+connected_layer *parse_connected(list *options, network *net, int count)
 {
-    int i;
     int input;
+    float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
-    float dropout = option_find_float(options, "dropout", 0.);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         input = option_find_int(options, "input",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
     }else{
-        input =  get_network_output_size_layer(net, count-1);
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        input =  get_network_output_size_layer(*net, count-1);
     }
-    connected_layer *layer = make_connected_layer(net.batch, input, output, dropout, activation);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < input*output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->weights[i]);
-            curr = next+1;
-        }
-    }
+    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(biases, layer->biases, output);
+    parse_data(weights, layer->weights, input*output);
+    #ifdef GPU
+    if(weights || biases) push_connected_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
 
-softmax_layer *parse_softmax(list *options, network net, int count)
+softmax_layer *parse_softmax(list *options, network *net, int count)
+{
+    int input;
+    int groups = option_find_int(options, "groups",1);
+    if(count == 0){
+        input = option_find_int(options, "input",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
+    option_unused(options);
+    return layer;
+}
+
+detection_layer *parse_detection(list *options, network *net, int count)
 {
     int input;
     if(count == 0){
         input = option_find_int(options, "input",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
     }else{
-        input =  get_network_output_size_layer(net, count-1);
+        input =  get_network_output_size_layer(*net, count-1);
     }
-    softmax_layer *layer = make_softmax_layer(net.batch, input);
+    int coords = option_find_int(options, "coords", 1);
+    int classes = option_find_int(options, "classes", 1);
+    int rescore = option_find_int(options, "rescore", 1);
+    detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
     option_unused(options);
     return layer;
 }
 
-maxpool_layer *parse_maxpool(list *options, network net, int count)
+cost_layer *parse_cost(list *options, network *net, int count)
+{
+    int input;
+    if(count == 0){
+        input = option_find_int(options, "input",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    char *type_s = option_find_str(options, "type", "sse");
+    COST_TYPE type = get_cost_type(type_s);
+    cost_layer *layer = make_cost_layer(net->batch, input, type);
+    option_unused(options);
+    return layer;
+}
+
+crop_layer *parse_crop(list *options, network *net, int count)
+{
+    float learning_rate, momentum, decay;
+    int h,w,c;
+    int crop_height = option_find_int(options, "crop_height",1);
+    int crop_width = option_find_int(options, "crop_width",1);
+    int flip = option_find_int(options, "flip",0);
+    if(count == 0){
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before crop layer must output image.");
+    }
+    crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
+    option_unused(options);
+    return layer;
+}
+
+maxpool_layer *parse_maxpool(list *options, network *net, int count)
 {
     int h,w,c;
     int stride = option_find_int(options, "stride",1);
+    int size = option_find_int(options, "size",stride);
     if(count == 0){
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride);
+    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
     option_unused(options);
     return layer;
 }
 
-normalization_layer *parse_normalization(list *options, network net, int count)
+/*
+freeweight_layer *parse_freeweight(list *options, network *net, int count)
+{
+    int input;
+    if(count == 0){
+        net->batch = option_find_int(options, "batch",1);
+        input = option_find_int(options, "input",1);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
+    option_unused(options);
+    return layer;
+}
+*/
+
+dropout_layer *parse_dropout(list *options, network *net, int count)
+{
+    int input;
+    float probability = option_find_float(options, "probability", .5);
+    if(count == 0){
+        net->batch = option_find_int(options, "batch",1);
+        input = option_find_int(options, "input",1);
+        float learning_rate = option_find_float(options, "learning_rate", .001);
+        float momentum = option_find_float(options, "momentum", .9);
+        float decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
+    option_unused(options);
+    return layer;
+}
+
+normalization_layer *parse_normalization(list *options, network *net, int count)
 {
     int h,w,c;
     int size = option_find_int(options, "size",1);
@@ -167,15 +344,16 @@
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    normalization_layer *layer = make_normalization_layer(net.batch,h,w,c,size, alpha, beta, kappa);
+    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
     option_unused(options);
     return layer;
 }
@@ -191,30 +369,50 @@
         section *s = (section *)n->val;
         list *options = s->options;
         if(is_convolutional(s)){
-            convolutional_layer *layer = parse_convolutional(options, net, count);
+            convolutional_layer *layer = parse_convolutional(options, &net, count);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
-            net.batch = layer->batch;
+        }else if(is_deconvolutional(s)){
+            deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
+            net.types[count] = DECONVOLUTIONAL;
+            net.layers[count] = layer;
         }else if(is_connected(s)){
-            connected_layer *layer = parse_connected(options, net, count);
+            connected_layer *layer = parse_connected(options, &net, count);
             net.types[count] = CONNECTED;
             net.layers[count] = layer;
-            net.batch = layer->batch;
+        }else if(is_crop(s)){
+            crop_layer *layer = parse_crop(options, &net, count);
+            net.types[count] = CROP;
+            net.layers[count] = layer;
+        }else if(is_cost(s)){
+            cost_layer *layer = parse_cost(options, &net, count);
+            net.types[count] = COST;
+            net.layers[count] = layer;
+        }else if(is_detection(s)){
+            detection_layer *layer = parse_detection(options, &net, count);
+            net.types[count] = DETECTION;
+            net.layers[count] = layer;
         }else if(is_softmax(s)){
-            softmax_layer *layer = parse_softmax(options, net, count);
+            softmax_layer *layer = parse_softmax(options, &net, count);
             net.types[count] = SOFTMAX;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_maxpool(s)){
-            maxpool_layer *layer = parse_maxpool(options, net, count);
+            maxpool_layer *layer = parse_maxpool(options, &net, count);
             net.types[count] = MAXPOOL;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_normalization(s)){
-            normalization_layer *layer = parse_normalization(options, net, count);
+            normalization_layer *layer = parse_normalization(options, &net, count);
             net.types[count] = NORMALIZATION;
             net.layers[count] = layer;
-            net.batch = layer->batch;
+        }else if(is_dropout(s)){
+            dropout_layer *layer = parse_dropout(options, &net, count);
+            net.types[count] = DROPOUT;
+            net.layers[count] = layer;
+        }else if(is_freeweight(s)){
+            //freeweight_layer *layer = parse_freeweight(options, &net, count);
+            //net.types[count] = FREEWEIGHT;
+            //net.layers[count] = layer;
+            fprintf(stderr, "Type not recognized: %s\n", s->type);
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
@@ -228,6 +426,23 @@
     return net;
 }
 
+int is_crop(section *s)
+{
+    return (strcmp(s->type, "[crop]")==0);
+}
+int is_cost(section *s)
+{
+    return (strcmp(s->type, "[cost]")==0);
+}
+int is_detection(section *s)
+{
+    return (strcmp(s->type, "[detection]")==0);
+}
+int is_deconvolutional(section *s)
+{
+    return (strcmp(s->type, "[deconv]")==0
+            || strcmp(s->type, "[deconvolutional]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
@@ -243,6 +458,14 @@
     return (strcmp(s->type, "[max]")==0
             || strcmp(s->type, "[maxpool]")==0);
 }
+int is_dropout(section *s)
+{
+    return (strcmp(s->type, "[dropout]")==0);
+}
+int is_freeweight(section *s)
+{
+    return (strcmp(s->type, "[freeweight]")==0);
+}
 
 int is_softmax(section *s)
 {
@@ -257,8 +480,8 @@
 
 int read_option(char *s, list *options)
 {
-    int i;
-    int len = strlen(s);
+    size_t i;
+    size_t len = strlen(s);
     char *val = 0;
     for(i = 0; i < len; ++i){
         if(s[i] == '='){
@@ -298,7 +521,7 @@
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -308,3 +531,335 @@
     return sections;
 }
 
+void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
+{
+    #ifdef GPU
+    if(gpu_index >= 0)  pull_convolutional_layer(*l);
+    #endif
+    int i;
+    fprintf(fp, "[convolutional]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "pad=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride, l->pad,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
+{
+    #ifdef GPU
+    if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
+    #endif
+    int i;
+    fprintf(fp, "[deconvolutional]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
+{
+    fprintf(fp, "[freeweight]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
+    }
+    fprintf(fp, "\n");
+}
+
+void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
+{
+    fprintf(fp, "[dropout]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    }
+    fprintf(fp, "probability=%g\n\n", l->probability);
+}
+
+void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
+{
+    #ifdef GPU
+    if(gpu_index >= 0) pull_connected_layer(*l);
+    #endif
+    int i;
+    fprintf(fp, "[connected]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\n"
+                "input=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay, net.seen);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "output=%d\n"
+            "activation=%s\n",
+            l->outputs,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
+{
+    fprintf(fp, "[crop]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay, net.seen);
+    }
+    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
+}
+
+void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
+{
+    fprintf(fp, "[maxpool]\n");
+    if(count == 0) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
+}
+
+void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
+{
+    fprintf(fp, "[localresponsenormalization]\n");
+    if(count == 0) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\n"
+            "alpha=%g\n"
+            "beta=%g\n"
+            "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
+}
+
+void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
+{
+    fprintf(fp, "[softmax]\n");
+    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
+}
+
+void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
+{
+    fprintf(fp, "[detection]\n");
+    fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\n", l->classes, l->coords, l->rescore);
+    fprintf(fp, "\n");
+}
+
+void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
+{
+    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
+    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
+}
+
+void save_weights(network net, char *filename)
+{
+    fprintf(stderr, "Saving weights to %s\n", filename);
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+
+    fwrite(&net.learning_rate, sizeof(float), 1, fp);
+    fwrite(&net.momentum, sizeof(float), 1, fp);
+    fwrite(&net.decay, sizeof(float), 1, fp);
+    fwrite(&net.seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_convolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_deconvolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_connected_layer(layer);
+            }
+            #endif
+            fwrite(layer.biases, sizeof(float), layer.outputs, fp);
+            fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights_upto(network *net, char *filename, int cutoff)
+{
+    fprintf(stderr, "Loading weights from %s\n", filename);
+    FILE *fp = fopen(filename, "r");
+    if(!fp) file_error(filename);
+
+    fread(&net->learning_rate, sizeof(float), 1, fp);
+    fread(&net->momentum, sizeof(float), 1, fp);
+    fread(&net->decay, sizeof(float), 1, fp);
+    fread(&net->seen, sizeof(int), 1, fp);
+    set_learning_network(net, net->learning_rate, net->momentum, net->decay);
+    
+    int i;
+    for(i = 0; i < net->n && i < cutoff; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_convolutional_layer(layer);
+            }
+            #endif
+        }
+        if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_deconvolutional_layer(layer);
+            }
+            #endif
+        }
+        if(net->types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net->layers[i];
+            fread(layer.biases, sizeof(float), layer.outputs, fp);
+            fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_connected_layer(layer);
+            }
+            #endif
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    load_weights_upto(net, filename, net->n);
+}
+
+void save_network(network net, char *filename)
+{
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+    int i;
+    for(i = 0; i < net.n; ++i)
+    {
+        if(net.types[i] == CONVOLUTIONAL)
+            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DECONVOLUTIONAL)
+            print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == CONNECTED)
+            print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
+        else if(net.types[i] == CROP)
+            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
+        else if(net.types[i] == MAXPOOL)
+            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
+        else if(net.types[i] == FREEWEIGHT)
+            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DROPOUT)
+            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
+        else if(net.types[i] == NORMALIZATION)
+            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
+        else if(net.types[i] == SOFTMAX)
+            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DETECTION)
+            print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
+        else if(net.types[i] == COST)
+            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
+    }
+    fclose(fp);
+}
+

--
Gitblit v1.10.0