From f047cfff99e00e28c02eb59b6d32386c122f9af6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 08 Mar 2015 18:31:12 +0000
Subject: [PATCH] renamed sigmoid to logistic

---
 src/parser.c |  248 ++++++++++++++++++++++++++++++++++++++++++++++++-
 1 files changed, 242 insertions(+), 6 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index a00feec..7b1057e 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,11 +7,13 @@
 #include "crop_layer.h"
 #include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
+#include "detection_layer.h"
 #include "freeweight_layer.h"
 #include "list.h"
 #include "option_list.h"
@@ -23,6 +25,7 @@
 }section;
 
 int is_convolutional(section *s);
+int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_dropout(section *s);
@@ -30,6 +33,7 @@
 int is_softmax(section *s);
 int is_crop(section *s);
 int is_cost(section *s);
+int is_detection(section *s);
 int is_normalization(section *s);
 list *read_cfg(char *filename);
 
@@ -65,6 +69,49 @@
     }
 }
 
+deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
+{
+    int h,w,c;
+    float learning_rate, momentum, decay;
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    if(count == 0){
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before deconvolutional layer must output image.");
+    }
+    deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    if(weights || biases) push_deconvolutional_layer(*layer);
+    #endif
+    option_unused(options);
+    return layer;
+}
+
 convolutional_layer *parse_convolutional(list *options, network *net, int count)
 {
     int h,w,c;
@@ -73,7 +120,7 @@
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     int pad = option_find_int(options, "pad",0);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         learning_rate = option_find_float(options, "learning_rate", .001);
@@ -103,7 +150,7 @@
     parse_data(weights, layer->filters, c*n*size*size);
     parse_data(biases, layer->biases, n);
     #ifdef GPU
-    push_convolutional_layer(*layer);
+    if(weights || biases) push_convolutional_layer(*layer);
     #endif
     option_unused(options);
     return layer;
@@ -114,7 +161,7 @@
     int input;
     float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         input = option_find_int(options, "input",1);
@@ -137,7 +184,7 @@
     parse_data(biases, layer->biases, output);
     parse_data(weights, layer->weights, input*output);
     #ifdef GPU
-    push_connected_layer(*layer);
+    if(weights || biases) push_connected_layer(*layer);
     #endif
     option_unused(options);
     return layer;
@@ -146,6 +193,22 @@
 softmax_layer *parse_softmax(list *options, network *net, int count)
 {
     int input;
+    int groups = option_find_int(options, "groups",1);
+    if(count == 0){
+        input = option_find_int(options, "input",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
+    option_unused(options);
+    return layer;
+}
+
+detection_layer *parse_detection(list *options, network *net, int count)
+{
+    int input;
     if(count == 0){
         input = option_find_int(options, "input",1);
         net->batch = option_find_int(options, "batch",1);
@@ -153,7 +216,10 @@
     }else{
         input =  get_network_output_size_layer(*net, count-1);
     }
-    softmax_layer *layer = make_softmax_layer(net->batch, input);
+    int coords = option_find_int(options, "coords", 1);
+    int classes = option_find_int(options, "classes", 1);
+    int rescore = option_find_int(options, "rescore", 1);
+    detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
     option_unused(options);
     return layer;
 }
@@ -306,6 +372,10 @@
             convolutional_layer *layer = parse_convolutional(options, &net, count);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
+        }else if(is_deconvolutional(s)){
+            deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
+            net.types[count] = DECONVOLUTIONAL;
+            net.layers[count] = layer;
         }else if(is_connected(s)){
             connected_layer *layer = parse_connected(options, &net, count);
             net.types[count] = CONNECTED;
@@ -318,6 +388,10 @@
             cost_layer *layer = parse_cost(options, &net, count);
             net.types[count] = COST;
             net.layers[count] = layer;
+        }else if(is_detection(s)){
+            detection_layer *layer = parse_detection(options, &net, count);
+            net.types[count] = DETECTION;
+            net.layers[count] = layer;
         }else if(is_softmax(s)){
             softmax_layer *layer = parse_softmax(options, &net, count);
             net.types[count] = SOFTMAX;
@@ -360,6 +434,15 @@
 {
     return (strcmp(s->type, "[cost]")==0);
 }
+int is_detection(section *s)
+{
+    return (strcmp(s->type, "[detection]")==0);
+}
+int is_deconvolutional(section *s)
+{
+    return (strcmp(s->type, "[deconv]")==0
+            || strcmp(s->type, "[deconvolutional]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
@@ -438,7 +521,7 @@
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -488,6 +571,45 @@
     fprintf(fp, "\n\n");
 }
 
+void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
+{
+    #ifdef GPU
+    if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
+    #endif
+    int i;
+    fprintf(fp, "[deconvolutional]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+
 void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
 {
     fprintf(fp, "[freeweight]\n");
@@ -590,6 +712,13 @@
     fprintf(fp, "\n");
 }
 
+void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
+{
+    fprintf(fp, "[detection]\n");
+    fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\n", l->classes, l->coords, l->rescore);
+    fprintf(fp, "\n");
+}
+
 void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
 {
     fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
@@ -597,6 +726,109 @@
     fprintf(fp, "\n");
 }
 
+void save_weights(network net, char *filename)
+{
+    fprintf(stderr, "Saving weights to %s\n", filename);
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+
+    fwrite(&net.learning_rate, sizeof(float), 1, fp);
+    fwrite(&net.momentum, sizeof(float), 1, fp);
+    fwrite(&net.decay, sizeof(float), 1, fp);
+    fwrite(&net.seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_convolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_deconvolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_connected_layer(layer);
+            }
+            #endif
+            fwrite(layer.biases, sizeof(float), layer.outputs, fp);
+            fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights_upto(network *net, char *filename, int cutoff)
+{
+    fprintf(stderr, "Loading weights from %s\n", filename);
+    FILE *fp = fopen(filename, "r");
+    if(!fp) file_error(filename);
+
+    fread(&net->learning_rate, sizeof(float), 1, fp);
+    fread(&net->momentum, sizeof(float), 1, fp);
+    fread(&net->decay, sizeof(float), 1, fp);
+    fread(&net->seen, sizeof(int), 1, fp);
+    set_learning_network(net, net->learning_rate, net->momentum, net->decay);
+    
+    int i;
+    for(i = 0; i < net->n && i < cutoff; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_convolutional_layer(layer);
+            }
+            #endif
+        }
+        if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_deconvolutional_layer(layer);
+            }
+            #endif
+        }
+        if(net->types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net->layers[i];
+            fread(layer.biases, sizeof(float), layer.outputs, fp);
+            fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_connected_layer(layer);
+            }
+            #endif
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    load_weights_upto(net, filename, net->n);
+}
 
 void save_network(network net, char *filename)
 {
@@ -607,6 +839,8 @@
     {
         if(net.types[i] == CONVOLUTIONAL)
             print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DECONVOLUTIONAL)
+            print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
         else if(net.types[i] == CONNECTED)
             print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
         else if(net.types[i] == CROP)
@@ -621,6 +855,8 @@
             print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
         else if(net.types[i] == SOFTMAX)
             print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DETECTION)
+            print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
         else if(net.types[i] == COST)
             print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
     }

--
Gitblit v1.10.0