From f0abcfa02b2094396f955c743f7f11fcdb2e3d13 Mon Sep 17 00:00:00 2001
From: IlyaOvodov <b@ovdv.ru>
Date: Mon, 04 Jun 2018 15:57:15 +0000
Subject: [PATCH] Merge branch 'master' of https://github.com/AlexeyAB/darknet into Fix_get_color_depth

---
 src/network_kernels.cu |  161 +++++++++++++++--------------------------------------
 1 files changed, 46 insertions(+), 115 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index b7d1d2b..a11d61f 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -22,7 +22,6 @@
 #include "region_layer.h"
 #include "convolutional_layer.h"
 #include "activation_layer.h"
-#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "reorg_layer.h"
 #include "avgpool_layer.h"
@@ -37,6 +36,10 @@
 #include "blas.h"
 }
 
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
 float * get_network_output_gpu_layer(network net, int i);
 float * get_network_delta_gpu_layer(network net, int i);
 float * get_network_output_gpu(network net);
@@ -51,50 +54,25 @@
         if(l.delta_gpu){
             fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
         }
-        if(l.type == CONVOLUTIONAL){
-            forward_convolutional_layer_gpu(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            forward_deconvolutional_layer_gpu(l, state);
-        } else if(l.type == ACTIVE){
-            forward_activation_layer_gpu(l, state);
-        } else if(l.type == LOCAL){
-            forward_local_layer_gpu(l, state);
-        } else if(l.type == DETECTION){
-            forward_detection_layer_gpu(l, state);
-        } else if(l.type == REGION){
-            forward_region_layer_gpu(l, state);
-        } else if(l.type == CONNECTED){
-            forward_connected_layer_gpu(l, state);
-        } else if(l.type == RNN){
-            forward_rnn_layer_gpu(l, state);
-        } else if(l.type == GRU){
-            forward_gru_layer_gpu(l, state);
-        } else if(l.type == CRNN){
-            forward_crnn_layer_gpu(l, state);
-        } else if(l.type == CROP){
-            forward_crop_layer_gpu(l, state);
-        } else if(l.type == COST){
-            forward_cost_layer_gpu(l, state);
-        } else if(l.type == SOFTMAX){
-            forward_softmax_layer_gpu(l, state);
-        } else if(l.type == NORMALIZATION){
-            forward_normalization_layer_gpu(l, state);
-        } else if(l.type == BATCHNORM){
-            forward_batchnorm_layer_gpu(l, state);
-        } else if(l.type == MAXPOOL){
-            forward_maxpool_layer_gpu(l, state);
-        } else if(l.type == REORG){
-            forward_reorg_layer_gpu(l, state);
-        } else if(l.type == AVGPOOL){
-            forward_avgpool_layer_gpu(l, state);
-        } else if(l.type == DROPOUT){
-            forward_dropout_layer_gpu(l, state);
-        } else if(l.type == ROUTE){
-            forward_route_layer_gpu(l, net);
-        } else if(l.type == SHORTCUT){
-            forward_shortcut_layer_gpu(l, state);
-        }
+        l.forward_gpu(l, state);
+		if(net.wait_stream)
+			cudaStreamSynchronize(get_cuda_stream());
         state.input = l.output_gpu;
+/*
+		cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+		if (l.out_w >= 0 && l.out_h >= 1 && l.c >= 3) {
+			int j;
+			for (j = 0; j < l.out_c; ++j) {
+				image img = make_image(l.out_w, l.out_h, 3);
+				memcpy(img.data, l.output+ l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
+				char buff[256];
+				sprintf(buff, "layer-%d slice-%d", i, j);
+				show_image(img, buff);
+			}
+			cvWaitKey(0); // wait press-key in console
+			cvDestroyAllWindows();
+		}
+*/
     }
 }
 
@@ -107,6 +85,7 @@
     for(i = net.n-1; i >= 0; --i){
         state.index = i;
         layer l = net.layers[i];
+        if (l.stopbackward) break;
         if(i == 0){
             state.input = original_input;
             state.delta = original_delta;
@@ -115,71 +94,21 @@
             state.input = prev.output_gpu;
             state.delta = prev.delta_gpu;
         }
-        if(l.type == CONVOLUTIONAL){
-            backward_convolutional_layer_gpu(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            backward_deconvolutional_layer_gpu(l, state);
-        } else if(l.type == ACTIVE){
-            backward_activation_layer_gpu(l, state);
-        } else if(l.type == LOCAL){
-            backward_local_layer_gpu(l, state);
-        } else if(l.type == MAXPOOL){
-            if(i != 0) backward_maxpool_layer_gpu(l, state);
-        } else if(l.type == REORG){
-            backward_reorg_layer_gpu(l, state);
-        } else if(l.type == AVGPOOL){
-            if(i != 0) backward_avgpool_layer_gpu(l, state);
-        } else if(l.type == DROPOUT){
-            backward_dropout_layer_gpu(l, state);
-        } else if(l.type == DETECTION){
-            backward_detection_layer_gpu(l, state);
-        } else if(l.type == REGION){
-            backward_region_layer_gpu(l, state);
-        } else if(l.type == NORMALIZATION){
-            backward_normalization_layer_gpu(l, state);
-        } else if(l.type == BATCHNORM){
-            backward_batchnorm_layer_gpu(l, state);
-        } else if(l.type == SOFTMAX){
-            if(i != 0) backward_softmax_layer_gpu(l, state);
-        } else if(l.type == CONNECTED){
-            backward_connected_layer_gpu(l, state);
-        } else if(l.type == RNN){
-            backward_rnn_layer_gpu(l, state);
-        } else if(l.type == GRU){
-            backward_gru_layer_gpu(l, state);
-        } else if(l.type == CRNN){
-            backward_crnn_layer_gpu(l, state);
-        } else if(l.type == COST){
-            backward_cost_layer_gpu(l, state);
-        } else if(l.type == ROUTE){
-            backward_route_layer_gpu(l, net);
-        } else if(l.type == SHORTCUT){
-            backward_shortcut_layer_gpu(l, state);
-        }
+        l.backward_gpu(l, state);
     }
 }
 
 void update_network_gpu(network net)
 {
+    cuda_set_device(net.gpu_index);
     int i;
     int update_batch = net.batch*net.subdivisions;
     float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            update_convolutional_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == DECONVOLUTIONAL){
-            update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
-        } else if(l.type == CONNECTED){
-            update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == GRU){
-            update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == RNN){
-            update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == CRNN){
-            update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == LOCAL){
-            update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        l.t = get_current_batch(net);
+        if(l.update_gpu){
+            l.update_gpu(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
@@ -203,7 +132,15 @@
     state.delta = 0;
     state.truth = *net.truth_gpu;
     state.train = 1;
+#ifdef CUDNN_HALF
+	int i;
+	for (i = 0; i < net.n; ++i) {
+		layer l = net.layers[i];
+		cuda_convert_f32_to_f16(l.weights_gpu, l.c*l.n*l.size*l.size, l.weights_gpu16);
+	}
+#endif
     forward_network_gpu(net, state);
+	//cudaStreamSynchronize(get_cuda_stream());
     backward_network_gpu(net, state);
 }
 
@@ -271,20 +208,9 @@
 {
     int update_batch = net.batch*net.subdivisions;
     float rate = get_current_rate(net);
-    if(l.type == CONVOLUTIONAL){
-        update_convolutional_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-    } else if(l.type == DECONVOLUTIONAL){
-        update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
-    } else if(l.type == CONNECTED){
-        update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-    } else if(l.type == RNN){
-        update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-    } else if(l.type == GRU){
-        update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-    } else if(l.type == CRNN){
-        update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
-    } else if(l.type == LOCAL){
-        update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+    l.t = get_current_batch(net);
+    if(l.update_gpu){
+        l.update_gpu(l, update_batch, rate, net.momentum, net.decay);
     }
 }
 
@@ -463,14 +389,17 @@
     }
     for(i = 0; i < n; ++i){
         pthread_join(threads[i], 0);
-        printf("%f\n", errors[i]);
+        //printf("%f\n", errors[i]);
         sum += errors[i];
     }
+    //cudaDeviceSynchronize();
     if (get_current_batch(nets[0]) % interval == 0) {
         printf("Syncing... ");
+        fflush(stdout);
         sync_nets(nets, n, interval);
         printf("Done!\n");
     }
+    //cudaDeviceSynchronize();
     free(threads);
     free(errors);
     return (float)sum/(n);
@@ -479,7 +408,7 @@
 float *get_network_output_layer_gpu(network net, int i)
 {
     layer l = net.layers[i];
-    cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
+    if(l.type != REGION) cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
     return l.output;
 }
 
@@ -492,6 +421,8 @@
 
 float *network_predict_gpu(network net, float *input)
 {
+	if (net.gpu_index != cuda_get_device())
+		cuda_set_device(net.gpu_index);
     int size = get_network_input_size(net) * net.batch;
     network_state state;
     state.index = 0;

--
Gitblit v1.10.0