From f762e6adb50d0a7eb72825b322e7d4192ae29ef3 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Sat, 03 Feb 2018 12:38:31 +0000
Subject: [PATCH] Merge pull request #357 from rajendraarora16/new-changes-darknet

---
 src/yolo_v2_class.hpp |  301 ++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 253 insertions(+), 48 deletions(-)

diff --git a/src/yolo_v2_class.hpp b/src/yolo_v2_class.hpp
index 0116cce..a9bd7b2 100644
--- a/src/yolo_v2_class.hpp
+++ b/src/yolo_v2_class.hpp
@@ -1,6 +1,8 @@
 #pragma once
 #include <memory>
 #include <vector>
+#include <deque>
+#include <algorithm>
 
 #ifdef OPENCV
 #include <opencv2/opencv.hpp>			// C++
@@ -8,57 +10,95 @@
 #include "opencv2/imgproc/imgproc_c.h"	// C
 #endif	// OPENCV
 
-//extern "C" {
-//#include "image.h"
-//}
-
 #ifdef YOLODLL_EXPORTS
+#if defined(_MSC_VER)
 #define YOLODLL_API __declspec(dllexport) 
 #else
+#define YOLODLL_API __attribute__((visibility("default")))
+#endif
+#else
+#if defined(_MSC_VER)
 #define YOLODLL_API __declspec(dllimport) 
+#else
+#define YOLODLL_API
+#endif
 #endif
 
 struct bbox_t {
-	float x, y, w, h;
-	float prob;
-	unsigned int obj_id;
+	unsigned int x, y, w, h;	// (x,y) - top-left corner, (w, h) - width & height of bounded box
+	float prob;					// confidence - probability that the object was found correctly
+	unsigned int obj_id;		// class of object - from range [0, classes-1]
+	unsigned int track_id;		// tracking id for video (0 - untracked, 1 - inf - tracked object)
+	unsigned int frames_counter;// counter of frames on which the object was detected
 };
 
-typedef struct {
-	int h;
-	int w;
-	int c;
-	float *data;
-} image_t;
+struct image_t {
+	int h;						// height
+	int w;						// width
+	int c;						// number of chanels (3 - for RGB)
+	float *data;				// pointer to the image data
+};
 
 
 class Detector {
 	std::shared_ptr<void> detector_gpu_ptr;
+	std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
+	const int cur_gpu_id;
 public:
+	float nms = .4;
+	bool wait_stream;
 
 	YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
 	YOLODLL_API ~Detector();
 
-	YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh = 0.2);
+	YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
+	YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
+	static YOLODLL_API image_t load_image(std::string image_filename);
+	static YOLODLL_API void free_image(image_t m);
+	YOLODLL_API int get_net_width() const;
+	YOLODLL_API int get_net_height() const;
 
-	YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
-
+	YOLODLL_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true, 
+												int const frames_story = 6, int const max_dist = 150);
 
 #ifdef OPENCV
-	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2) {
-		std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); } );
-		*image_ptr = mat_to_image(mat);
-		return detect(*image_ptr, thresh);
+	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
+	{
+		if(mat.data == NULL)
+			throw std::runtime_error("Image is empty");
+		auto image_ptr = mat_to_image_resize(mat);
+		return detect_resized(*image_ptr, mat.size(), thresh, use_mean);
+	}
+
+	std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false)
+	{
+		if (img.data == NULL)
+			throw std::runtime_error("Image is empty");
+		auto detection_boxes = detect(img, thresh, use_mean);
+		float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h;
+		for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
+		return detection_boxes;
+	}
+
+	std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
+	{
+		if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
+		cv::Mat det_mat;
+		cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height()));
+		return mat_to_image(det_mat);
+	}
+
+	static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
+	{
+		cv::Mat img;
+		cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
+		std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
+		std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
+		*image_ptr = ipl_to_image(ipl_small.get());
+		return image_ptr;
 	}
 
 private:
-	static image_t mat_to_image(cv::Mat img)
-	{
-		std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
-		image_t im_small = ipl_to_image(ipl_small.get());
-		rgbgr_image(im_small);
-		return im_small;
-	}
 
 	static image_t ipl_to_image(IplImage* src)
 	{
@@ -68,15 +108,17 @@
 		int c = src->nChannels;
 		int step = src->widthStep;
 		image_t out = make_image_custom(w, h, c);
-		int i, j, k, count = 0;;
+		int count = 0;
 
-		for (k = 0; k < c; ++k) {
-			for (i = 0; i < h; ++i) {
-				for (j = 0; j < w; ++j) {
-					out.data[count++] = data[i*step + j*c + k] / 255.;
+		for (int k = 0; k < c; ++k) {
+			for (int i = 0; i < h; ++i) {
+				int i_step = i*step;
+				for (int j = 0; j < w; ++j) {
+					out.data[count++] = data[i_step + j*c + k] / 255.;
 				}
 			}
 		}
+
 		return out;
 	}
 
@@ -97,24 +139,187 @@
 		return out;
 	}
 
-	static void rgbgr_image(image_t im)
-	{
-		int i;
-		for (i = 0; i < im.w*im.h; ++i) {
-			float swap = im.data[i];
-			im.data[i] = im.data[i + im.w*im.h * 2];
-			im.data[i + im.w*im.h * 2] = swap;
-		}
-	}
-
-	static void free_image(image_t m)
-	{
-		if (m.data) {
-			free(m.data);
-		}
-	}
 #endif	// OPENCV
+
 };
 
 
+#if defined(TRACK_OPTFLOW) && defined(OPENCV)
+
+#include <opencv2/cudaoptflow.hpp>
+#include <opencv2/cudaimgproc.hpp>
+#include <opencv2/cudaarithm.hpp>
+#include <opencv2/core/cuda.hpp>
+
+class Tracker_optflow {
+public:
+	const int gpu_count;
+	const int gpu_id;
+	const int flow_error;
+
+
+	Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 2000, int _flow_error = -1) :
+		gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
+		flow_error((_flow_error > 0)? _flow_error:(win_size*4))
+	{
+		int const old_gpu_id = cv::cuda::getDevice();
+		cv::cuda::setDevice(gpu_id);
+
+		stream = cv::cuda::Stream();
+
+		sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
+		sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size));	// 9, 15, 21, 31
+		sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level);		// +- 3 pt
+		sync_PyrLKOpticalFlow_gpu->setNumIters(iterations);	// 2000, def: 30
+
+		cv::cuda::setDevice(old_gpu_id);
+	}
+
+	// just to avoid extra allocations
+	cv::cuda::GpuMat src_mat_gpu;
+	cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
+	cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
+	cv::cuda::GpuMat status_gpu, err_gpu;
+
+	cv::cuda::GpuMat src_grey_gpu;	// used in both functions
+	cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
+	cv::cuda::Stream stream;
+
+	std::vector<bbox_t> cur_bbox_vec;
+	std::vector<bool> good_bbox_vec_flags;
+	cv::Mat prev_pts_flow_cpu;
+
+	void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
+	{
+		cur_bbox_vec = _cur_bbox_vec;
+		good_bbox_vec_flags.resize(cur_bbox_vec.size());
+		for (auto &i : good_bbox_vec_flags) i = true;
+		cv::Mat prev_pts, cur_pts_flow_cpu;
+
+		for (auto &i : cur_bbox_vec) {
+			float x_center = (i.x + i.w / 2.0F);
+			float y_center = (i.y + i.h / 2.0F);
+			prev_pts.push_back(cv::Point2f(x_center, y_center));
+		}
+
+		if (prev_pts.rows == 0)
+			prev_pts_flow_cpu = cv::Mat();
+		else
+			cv::transpose(prev_pts, prev_pts_flow_cpu);
+
+		if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
+			prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
+			cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
+
+			status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
+			err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
+		}
+
+		prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
+	}
+
+
+	void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec)
+	{
+		int const old_gpu_id = cv::cuda::getDevice();
+		if (old_gpu_id != gpu_id)
+			cv::cuda::setDevice(gpu_id);
+
+		if (src_mat.channels() == 3) {
+			if (src_mat_gpu.cols == 0) {
+				src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
+				src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
+			}
+
+			update_cur_bbox_vec(_cur_bbox_vec);
+
+			//src_grey_gpu.upload(src_mat, stream);	// use BGR
+			src_mat_gpu.upload(src_mat, stream);
+			cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
+		}
+		if (old_gpu_id != gpu_id)
+			cv::cuda::setDevice(old_gpu_id);
+	}
+
+
+	std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true)
+	{
+		if (sync_PyrLKOpticalFlow_gpu.empty()) {
+			std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
+			return cur_bbox_vec;
+		}
+
+		int const old_gpu_id = cv::cuda::getDevice();
+		if(old_gpu_id != gpu_id)
+			cv::cuda::setDevice(gpu_id);
+
+		if (dst_mat_gpu.cols == 0) {
+			dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
+			dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
+		}
+
+		//dst_grey_gpu.upload(dst_mat, stream);	// use BGR
+		dst_mat_gpu.upload(dst_mat, stream);
+		cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream);
+
+		if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
+			stream.waitForCompletion();
+			src_grey_gpu = dst_grey_gpu.clone();
+			cv::cuda::setDevice(old_gpu_id);
+			return cur_bbox_vec;
+		}
+
+		////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu);	// OpenCV 2.4.x
+		sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream);	// OpenCV 3.x
+
+		cv::Mat cur_pts_flow_cpu;
+		cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
+
+		dst_grey_gpu.copyTo(src_grey_gpu, stream);
+
+		cv::Mat err_cpu, status_cpu;
+		err_gpu.download(err_cpu, stream);
+		status_gpu.download(status_cpu, stream);
+
+		stream.waitForCompletion();
+
+		std::vector<bbox_t> result_bbox_vec;
+
+		if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size()) 
+		{
+			for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+			{
+				cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
+				cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
+
+				float moved_x = cur_key_pt.x - prev_key_pt.x;
+				float moved_y = cur_key_pt.y - prev_key_pt.y;
+
+				if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
+					if (!check_error || (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0))
+					{
+						cur_bbox_vec[i].x += moved_x + 0.5;
+						cur_bbox_vec[i].y += moved_y + 0.5;
+						result_bbox_vec.push_back(cur_bbox_vec[i]);
+					}
+					else good_bbox_vec_flags[i] = false;
+				else good_bbox_vec_flags[i] = false;
+			}
+		}
+
+		cur_pts_flow_gpu.swap(prev_pts_flow_gpu);
+		cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu);
+
+		if (old_gpu_id != gpu_id)
+			cv::cuda::setDevice(old_gpu_id);
+
+		return result_bbox_vec;
+	}
+
+};
+#else
+
+class Tracker_optflow {};
+
+#endif	// defined(TRACK_OPTFLOW) && defined(OPENCV) 
 

--
Gitblit v1.10.0