From f7a17f82eb43de864a4f980f235055da9685eef8 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 29 Jan 2014 00:28:42 +0000
Subject: [PATCH] Convolutional layers working w/ matrices
---
src/connected_layer.c | 58 +++++++++++++++++++++++++++++-----------------------------
1 files changed, 29 insertions(+), 29 deletions(-)
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 6871b2e..5f6631c 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -15,19 +15,19 @@
layer->inputs = inputs;
layer->outputs = outputs;
- layer->output = calloc(outputs, sizeof(double*));
- layer->delta = calloc(outputs, sizeof(double*));
+ layer->output = calloc(outputs, sizeof(float*));
+ layer->delta = calloc(outputs, sizeof(float*));
- layer->weight_updates = calloc(inputs*outputs, sizeof(double));
- layer->weight_momentum = calloc(inputs*outputs, sizeof(double));
- layer->weights = calloc(inputs*outputs, sizeof(double));
- double scale = 2./inputs;
+ layer->weight_updates = calloc(inputs*outputs, sizeof(float));
+ layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
+ layer->weights = calloc(inputs*outputs, sizeof(float));
+ float scale = 2./inputs;
for(i = 0; i < inputs*outputs; ++i)
layer->weights[i] = rand_normal()*scale;
- layer->bias_updates = calloc(outputs, sizeof(double));
- layer->bias_momentum = calloc(outputs, sizeof(double));
- layer->biases = calloc(outputs, sizeof(double));
+ layer->bias_updates = calloc(outputs, sizeof(float));
+ layer->bias_momentum = calloc(outputs, sizeof(float));
+ layer->biases = calloc(outputs, sizeof(float));
for(i = 0; i < outputs; ++i)
//layer->biases[i] = rand_normal()*scale + scale;
layer->biases[i] = 0;
@@ -36,7 +36,7 @@
return layer;
}
-void update_connected_layer(connected_layer layer, double step, double momentum, double decay)
+void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
{
int i;
for(i = 0; i < layer.outputs; ++i){
@@ -47,27 +47,27 @@
layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
layer.weights[i] += layer.weight_momentum[i];
}
- memset(layer.bias_updates, 0, layer.outputs*sizeof(double));
- memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double));
+ memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
+ memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
}
-void forward_connected_layer(connected_layer layer, double *input)
+void forward_connected_layer(connected_layer layer, float *input)
{
int i;
- memcpy(layer.output, layer.biases, layer.outputs*sizeof(double));
+ memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
int m = 1;
int k = layer.inputs;
int n = layer.outputs;
- double *a = input;
- double *b = layer.weights;
- double *c = layer.output;
+ float *a = input;
+ float *b = layer.weights;
+ float *c = layer.output;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
for(i = 0; i < layer.outputs; ++i){
layer.output[i] = activate(layer.output[i], layer.activation);
}
}
-void learn_connected_layer(connected_layer layer, double *input)
+void learn_connected_layer(connected_layer layer, float *input)
{
int i;
for(i = 0; i < layer.outputs; ++i){
@@ -77,28 +77,28 @@
int m = layer.inputs;
int k = 1;
int n = layer.outputs;
- double *a = input;
- double *b = layer.delta;
- double *c = layer.weight_updates;
+ float *a = input;
+ float *b = layer.delta;
+ float *c = layer.weight_updates;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
-void backward_connected_layer(connected_layer layer, double *input, double *delta)
+void backward_connected_layer(connected_layer layer, float *input, float *delta)
{
- memset(delta, 0, layer.inputs*sizeof(double));
+ memset(delta, 0, layer.inputs*sizeof(float));
int m = layer.inputs;
int k = layer.outputs;
int n = 1;
- double *a = layer.weights;
- double *b = layer.delta;
- double *c = delta;
+ float *a = layer.weights;
+ float *b = layer.delta;
+ float *c = delta;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
/*
- void forward_connected_layer(connected_layer layer, double *input)
+ void forward_connected_layer(connected_layer layer, float *input)
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
@@ -109,7 +109,7 @@
layer.output[i] = activate(layer.output[i], layer.activation);
}
}
- void learn_connected_layer(connected_layer layer, double *input)
+ void learn_connected_layer(connected_layer layer, float *input)
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
@@ -120,7 +120,7 @@
}
}
}
- void backward_connected_layer(connected_layer layer, double *input, double *delta)
+ void backward_connected_layer(connected_layer layer, float *input, float *delta)
{
int i, j;
--
Gitblit v1.10.0