From f7a17f82eb43de864a4f980f235055da9685eef8 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 29 Jan 2014 00:28:42 +0000
Subject: [PATCH] Convolutional layers working w/ matrices

---
 src/tests.c |  129 ++++++++++++++++++------------------------
 1 files changed, 55 insertions(+), 74 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index af22ddb..00cd1a1 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -14,6 +14,9 @@
 #include <stdlib.h>
 #include <stdio.h>
 
+#define _GNU_SOURCE
+#include <fenv.h>
+
 void test_convolve()
 {
     image dog = load_image("dog.jpg");
@@ -26,7 +29,7 @@
         convolve(dog, kernel, 1, 0, edge, 1);
     }
     end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image_layers(edge, "Test Convolve");
 }
 
@@ -38,11 +41,11 @@
     int size = 11;
     int stride = 4;
     int n = 40;
-    double *filters = make_random_image(size, size, dog.c*n).data;
+    float *filters = make_random_image(size, size, dog.c*n).data;
 
     int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
     int mh = (size*size*dog.c);
-    double *matrix = calloc(mh*mw, sizeof(double));
+    float *matrix = calloc(mh*mw, sizeof(float));
 
     image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
 
@@ -54,7 +57,7 @@
         gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
     }
     end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image_layers(edge, "Test Convolve");
     cvWaitKey(0);
 }
@@ -72,11 +75,11 @@
     int n = 1;
     int stride = 1;
     int size = 3;
-    double eps = .00000001;
+    float eps = .00000001;
     image test = make_random_image(5,5, 1);
     convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
     image out = get_convolutional_image(layer);
-    double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
+    float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
     
     forward_convolutional_layer(layer, test.data);
     image base = copy_image(out);
@@ -90,19 +93,19 @@
         jacobian[i] = partial.data;
         test.data[i] -= eps;
     }
-    double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
+    float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
     image in_delta = make_image(test.h, test.w, test.c);
     image out_delta = get_convolutional_delta(layer);
     for(i = 0; i < out.h*out.w*out.c; ++i){
         out_delta.data[i] = 1;
-        //backward_convolutional_layer(layer, test.data, in_delta.data);
+        backward_convolutional_layer(layer, in_delta.data);
         image partial = copy_image(in_delta);
         jacobian2[i] = partial.data;
         out_delta.data[i] = 0;
     }
     int j;
-    double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
-    double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
+    float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+    float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
     for(i = 0; i < test.h*test.w*test.c; ++i){
         for(j =0 ; j < out.h*out.w*out.c; ++j){
             j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
@@ -112,12 +115,11 @@
     }
 
 
-    image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
-    image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+    image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+    image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
     printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
     show_image(mj1, "forward jacobian");
     show_image(mj2, "backward jacobian");
-    
 }
 
 void test_load()
@@ -145,7 +147,7 @@
         rotate_image(dog);
     }
     end = clock();
-    printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image(dog, "Test Rotate");
 
     image random = make_random_image(3,3,3);
@@ -159,18 +161,18 @@
 void test_parser()
 {
     network net = parse_network_cfg("test_parser.cfg");
-    double input[1];
+    float input[1];
     int count = 0;
         
-    double avgerr = 0;
+    float avgerr = 0;
     while(++count < 100000000){
-        double v = ((double)rand()/RAND_MAX);
-        double truth = v*v;
+        float v = ((float)rand()/RAND_MAX);
+        float truth = v*v;
         input[0] = v;
         forward_network(net, input);
-        double *out = get_network_output(net);
-        double *delta = get_network_delta(net);
-        double err = pow((out[0]-truth),2.);
+        float *out = get_network_output(net);
+        float *delta = get_network_delta(net);
+        float err = pow((out[0]-truth),2.);
         avgerr = .99 * avgerr + .01 * err;
         if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
         delta[0] = truth - out[0];
@@ -192,9 +194,9 @@
     srand(0);
     int i = 0;
     char *labels[] = {"cat","dog"};
-    double lr = .00001;
-    double momentum = .9;
-    double decay = 0.01;
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
     while(i++ < 1000 || 1){
         data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
         train_network(net, train, lr, momentum, decay);
@@ -207,32 +209,33 @@
 {
     srand(444444);
     srand(888888);
-    network net = parse_network_cfg("nist_basic.cfg");
+    network net = parse_network_cfg("nist.cfg");
     data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
     data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
     normalize_data_rows(train);
     normalize_data_rows(test);
     //randomize_data(train);
     int count = 0;
-    double lr = .0005;
-    double momentum = .9;
-    double decay = 0.01;
+    float lr = .0005;
+    float momentum = .9;
+    float decay = 0.01;
     clock_t start = clock(), end;
     while(++count <= 100){
-        visualize_network(net);
-        double loss = train_network_sgd(net, train, 10000, lr, momentum, decay);
+        //visualize_network(net);
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
         printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay);
         end = clock();
-        printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+        printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
         start=end;
         cvWaitKey(100);
         //lr /= 2; 
         if(count%5 == 0){
-            double train_acc = network_accuracy(net, train);
+            float train_acc = network_accuracy(net, train);
             fprintf(stderr, "\nTRAIN: %f\n", train_acc);
-            double test_acc = network_accuracy(net, test);
+            float test_acc = network_accuracy(net, test);
             fprintf(stderr, "TEST: %f\n\n", test_acc);
             printf("%d, %f, %f\n", count, train_acc, test_acc);
+            lr *= .5;
         }
     }
 }
@@ -253,24 +256,24 @@
     int n = 30;
     for(i = 0; i < n; ++i){
         int count = 0;
-        double lr = .0005;
-        double momentum = .9;
-        double decay = .01;
+        float lr = .0005;
+        float momentum = .9;
+        float decay = .01;
         network net = parse_network_cfg("nist.cfg");
         while(++count <= 15){
-            double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+            float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
             printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
             lr /= 2; 
         }
         matrix partial = network_predict_data(net, test);
-        double acc = matrix_accuracy(test.y, partial);
+        float acc = matrix_accuracy(test.y, partial);
         printf("Model Accuracy: %lf\n", acc);
         matrix_add_matrix(partial, prediction);
         acc = matrix_accuracy(test.y, prediction);
         printf("Current Ensemble Accuracy: %lf\n", acc);
         free_matrix(partial);
     }
-    double acc = matrix_accuracy(test.y, prediction);
+    float acc = matrix_accuracy(test.y, prediction);
     printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
@@ -279,19 +282,19 @@
     network net = parse_network_cfg("connected.cfg");
     matrix m = csv_to_matrix("train.csv");
     //matrix ho = hold_out_matrix(&m, 2500);
-    double *truth = pop_column(&m, 0);
-    //double *ho_truth = pop_column(&ho, 0);
+    float *truth = pop_column(&m, 0);
+    //float *ho_truth = pop_column(&ho, 0);
     int i;
     clock_t start = clock(), end;
     int count = 0;
     while(++count <= 300){
         for(i = 0; i < m.rows; ++i){
             int index = rand()%m.rows;
-            //image p = double_to_image(1690,1,1,m.vals[index]);
+            //image p = float_to_image(1690,1,1,m.vals[index]);
             //normalize_image(p);
             forward_network(net, m.vals[index]);
-            double *out = get_network_output(net);
-            double *delta = get_network_delta(net);
+            float *out = get_network_output(net);
+            float *delta = get_network_delta(net);
             //printf("%f\n", out[0]);
             delta[0] = truth[index] - out[0];
             // printf("%f\n", delta[0]);
@@ -299,8 +302,8 @@
             //backward_network(net, m.vals[index], );
             update_network(net, .00001, 0,0);
         }
-        //double test_acc = error_network(net, m, truth);
-        //double valid_acc = error_network(net, ho, ho_truth);
+        //float test_acc = error_network(net, m, truth);
+        //float valid_acc = error_network(net, ho, ho_truth);
         //printf("%f, %f\n", test_acc, valid_acc);
         //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
         //if(valid_acc > .70) break;
@@ -311,12 +314,12 @@
     truth = pop_column(&test, 0);
     for(i = 0; i < test.rows; ++i){
         forward_network(net, test.vals[i]);
-        double *out = get_network_output(net);
+        float *out = get_network_output(net);
         if(fabs(out[0]) < .5) fprintf(fp, "0\n");
         else fprintf(fp, "1\n");
     }
     fclose(fp);
-    printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
 }
 
 void test_split()
@@ -326,30 +329,6 @@
     printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
 }
 
-double *random_matrix(int rows, int cols)
-{
-    int i, j;
-    double *m = calloc(rows*cols, sizeof(double));
-    for(i = 0; i < rows; ++i){
-        for(j = 0; j < cols; ++j){
-            m[i*cols+j] = (double)rand()/RAND_MAX;
-        }
-    }
-    return m;
-}
-
-void test_blas()
-{
-    int m = 1000, n = 1000, k = 1000;
-    double *a = random_matrix(m,k);
-    double *b = random_matrix(k,n);
-    double *c = random_matrix(m,n);
-    int i;
-    for(i = 0; i<1000; ++i){
-        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    }
-}
-
 void test_im2row()
 {
     int h = 20;
@@ -362,16 +341,18 @@
     int mw = ((h-size)/stride+1)*((w-size)/stride+1);
     int mh = (size*size*c);
     int msize = mc*mw*mh;
-    double *matrix = calloc(msize, sizeof(double));
+    float *matrix = calloc(msize, sizeof(float));
     int i;
     for(i = 0; i < 1000; ++i){
         im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
-        image render = double_to_image(mh, mw, mc, matrix);
+        image render = float_to_image(mh, mw, mc, matrix);
     }
 }
 
 int main()
 {
+    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
+
     //test_blas();
     //test_convolve_matrix();
     //    test_im2row();

--
Gitblit v1.10.0