From f88baf4a3a756140cef3ca07be98cabb803d80ae Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 18 Dec 2014 23:46:45 +0000
Subject: [PATCH] 99 problems

---
 src/parser.c |  247 ++++++++++++++++++++++++++++++++++++-------------
 1 files changed, 182 insertions(+), 65 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 1656346..d53e87c 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -4,12 +4,15 @@
 
 #include "parser.h"
 #include "activations.h"
+#include "crop_layer.h"
+#include "cost_layer.h"
 #include "convolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
+#include "freeweight_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -23,7 +26,10 @@
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_dropout(section *s);
+int is_freeweight(section *s);
 int is_softmax(section *s);
+int is_crop(section *s);
+int is_cost(section *s);
 int is_normalization(section *s);
 list *read_cfg(char *filename);
 
@@ -43,9 +49,24 @@
     free(s);
 }
 
-convolutional_layer *parse_convolutional(list *options, network *net, int count)
+void parse_data(char *data, float *a, int n)
 {
     int i;
+    if(!data) return;
+    char *curr = data;
+    char *next = data;
+    int done = 0;
+    for(i = 0; i < n && !done; ++i){
+        while(*++next !='\0' && *next != ',');
+        if(*next == '\0') done = 1;
+        *next = '\0';
+        sscanf(curr, "%g", &a[i]);
+        curr = next+1;
+    }
+}
+
+convolutional_layer *parse_convolutional(list *options, network *net, int count)
+{
     int h,w,c;
     float learning_rate, momentum, decay;
     int n = option_find_int(options, "filters",1);
@@ -76,56 +97,19 @@
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
     convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < n; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < c*n*size*size; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->filters[i]);
-            curr = next+1;
-        }
-    }
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
-    if(biases){
-        char *curr = biases;
-        char *next = biases;
-        int done = 0;
-        for(i = 0; i < n && !done; ++i){
-            while(*++next !='\0' && *next != ',');
-            if(*next == '\0') done = 1;
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-    }
-    if(weights){
-        char *curr = weights;
-        char *next = weights;
-        int done = 0;
-        for(i = 0; i < c*n*size*size && !done; ++i){
-            while(*++next !='\0' && *next != ',');
-            if(*next == '\0') done = 1;
-            *next = '\0';
-            sscanf(curr, "%g", &layer->filters[i]);
-            curr = next+1;
-        }
-    }
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    push_convolutional_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
 
 connected_layer *parse_connected(list *options, network *net, int count)
 {
-    int i;
     int input;
     float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
@@ -147,23 +131,13 @@
         input =  get_network_output_size_layer(*net, count-1);
     }
     connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < input*output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->weights[i]);
-            curr = next+1;
-        }
-    }
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(biases, layer->biases, output);
+    parse_data(weights, layer->weights, input*output);
+    #ifdef GPU
+    push_connected_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
@@ -182,6 +156,52 @@
     return layer;
 }
 
+cost_layer *parse_cost(list *options, network *net, int count)
+{
+    int input;
+    if(count == 0){
+        input = option_find_int(options, "input",1);
+        net->batch = option_find_int(options, "batch",1);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    char *type_s = option_find_str(options, "type", "sse");
+    COST_TYPE type = get_cost_type(type_s);
+    cost_layer *layer = make_cost_layer(net->batch, input, type);
+    option_unused(options);
+    return layer;
+}
+
+crop_layer *parse_crop(list *options, network *net, int count)
+{
+    float learning_rate, momentum, decay;
+    int h,w,c;
+    int crop_height = option_find_int(options, "crop_height",1);
+    int crop_width = option_find_int(options, "crop_width",1);
+    int flip = option_find_int(options, "flip",0);
+    if(count == 0){
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+    }else{
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before crop layer must output image.");
+    }
+    crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
+    option_unused(options);
+    return layer;
+}
+
 maxpool_layer *parse_maxpool(list *options, network *net, int count)
 {
     int h,w,c;
@@ -204,6 +224,20 @@
     return layer;
 }
 
+freeweight_layer *parse_freeweight(list *options, network *net, int count)
+{
+    int input;
+    if(count == 0){
+        net->batch = option_find_int(options, "batch",1);
+        input = option_find_int(options, "input",1);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
+    option_unused(options);
+    return layer;
+}
+
 dropout_layer *parse_dropout(list *options, network *net, int count)
 {
     int input;
@@ -211,6 +245,12 @@
     if(count == 0){
         net->batch = option_find_int(options, "batch",1);
         input = option_find_int(options, "input",1);
+        float learning_rate = option_find_float(options, "learning_rate", .001);
+        float momentum = option_find_float(options, "momentum", .9);
+        float decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
     }else{
         input =  get_network_output_size_layer(*net, count-1);
     }
@@ -261,6 +301,14 @@
             connected_layer *layer = parse_connected(options, &net, count);
             net.types[count] = CONNECTED;
             net.layers[count] = layer;
+        }else if(is_crop(s)){
+            crop_layer *layer = parse_crop(options, &net, count);
+            net.types[count] = CROP;
+            net.layers[count] = layer;
+        }else if(is_cost(s)){
+            cost_layer *layer = parse_cost(options, &net, count);
+            net.types[count] = COST;
+            net.layers[count] = layer;
         }else if(is_softmax(s)){
             softmax_layer *layer = parse_softmax(options, &net, count);
             net.types[count] = SOFTMAX;
@@ -277,6 +325,10 @@
             dropout_layer *layer = parse_dropout(options, &net, count);
             net.types[count] = DROPOUT;
             net.layers[count] = layer;
+        }else if(is_freeweight(s)){
+            freeweight_layer *layer = parse_freeweight(options, &net, count);
+            net.types[count] = FREEWEIGHT;
+            net.layers[count] = layer;
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
@@ -290,6 +342,14 @@
     return net;
 }
 
+int is_crop(section *s)
+{
+    return (strcmp(s->type, "[crop]")==0);
+}
+int is_cost(section *s)
+{
+    return (strcmp(s->type, "[cost]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
@@ -309,6 +369,10 @@
 {
     return (strcmp(s->type, "[dropout]")==0);
 }
+int is_freeweight(section *s)
+{
+    return (strcmp(s->type, "[freeweight]")==0);
+}
 
 int is_softmax(section *s)
 {
@@ -389,11 +453,11 @@
                 l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
     } else {
         if(l->learning_rate != net.learning_rate)
-                fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
         if(l->momentum != net.momentum)
-                fprintf(fp, "momentum=%g\n", l->momentum);
+            fprintf(fp, "momentum=%g\n", l->momentum);
         if(l->decay != net.decay)
-                fprintf(fp, "decay=%g\n", l->decay);
+            fprintf(fp, "decay=%g\n", l->decay);
     }
     fprintf(fp, "filters=%d\n"
             "size=%d\n"
@@ -409,6 +473,25 @@
     for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
     fprintf(fp, "\n\n");
 }
+
+void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
+{
+    fprintf(fp, "[freeweight]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
+    }
+    fprintf(fp, "\n");
+}
+
+void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
+{
+    fprintf(fp, "[dropout]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    }
+    fprintf(fp, "probability=%g\n\n", l->probability);
+}
+
 void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
 {
     int i;
@@ -432,12 +515,30 @@
             "activation=%s\n",
             l->outputs,
             get_activation_string(l->activation));
-    fprintf(fp, "data=");
+    fprintf(fp, "biases=");
     for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
     fprintf(fp, "\n\n");
 }
 
+void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
+{
+    fprintf(fp, "[crop]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n",
+                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay);
+    }
+    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
+}
+
 void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
 {
     fprintf(fp, "[maxpool]\n");
@@ -470,6 +571,14 @@
     fprintf(fp, "\n");
 }
 
+void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
+{
+    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
+    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
+}
+
+
 void save_network(network net, char *filename)
 {
     FILE *fp = fopen(filename, "w");
@@ -481,12 +590,20 @@
             print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
         else if(net.types[i] == CONNECTED)
             print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
+        else if(net.types[i] == CROP)
+            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
         else if(net.types[i] == MAXPOOL)
             print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
+        else if(net.types[i] == FREEWEIGHT)
+            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DROPOUT)
+            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
         else if(net.types[i] == NORMALIZATION)
             print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
         else if(net.types[i] == SOFTMAX)
             print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
+        else if(net.types[i] == COST)
+            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
     }
     fclose(fp);
 }

--
Gitblit v1.10.0