From f98bf6bbdb5ed81f2ea2071ad8e705130f7ba596 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 28 Mar 2015 23:11:37 +0000
Subject: [PATCH] We do our OWN resizing!

---
 src/convolutional_layer.c |  327 +++++++++++++++++++++++++++++++++++++-----------------
 1 files changed, 222 insertions(+), 105 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index d4aff73..e20a41c 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,150 +1,267 @@
 #include "convolutional_layer.h"
+#include "utils.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
 #include <stdio.h>
+#include <time.h>
+
+int convolutional_out_height(convolutional_layer layer)
+{
+    int h = layer.h;
+    if (!layer.pad) h -= layer.size;
+    else h -= 1;
+    return h/layer.stride + 1;
+}
+
+int convolutional_out_width(convolutional_layer layer)
+{
+    int w = layer.w;
+    if (!layer.pad) w -= layer.size;
+    else w -= 1;
+    return w/layer.stride + 1;
+}
 
 image get_convolutional_image(convolutional_layer layer)
 {
-    int h = (layer.h-1)/layer.stride + 1;
-    int w = (layer.w-1)/layer.stride + 1;
-    int c = layer.n;
-    return double_to_image(h,w,c,layer.output);
+    int h,w,c;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.output);
 }
 
 image get_convolutional_delta(convolutional_layer layer)
 {
-    int h = (layer.h-1)/layer.stride + 1;
-    int w = (layer.w-1)/layer.stride + 1;
-    int c = layer.n;
-    return double_to_image(h,w,c,layer.delta);
+    int h,w,c;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activator)
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
 {
-    printf("Convolutional Layer: %d x %d x %d image, %d filters\n", h,w,c,n);
     int i;
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+
     layer->h = h;
     layer->w = w;
     layer->c = c;
     layer->n = n;
+    layer->batch = batch;
     layer->stride = stride;
-    layer->kernels = calloc(n, sizeof(image));
-    layer->kernel_updates = calloc(n, sizeof(image));
-    layer->biases = calloc(n, sizeof(double));
-    layer->bias_updates = calloc(n, sizeof(double));
-    for(i = 0; i < n; ++i){
-        layer->biases[i] = .005;
-        layer->kernels[i] = make_random_kernel(size, c);
-        layer->kernel_updates[i] = make_random_kernel(size, c);
-    }
-    layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * n, sizeof(double));
-    layer->delta  = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * n, sizeof(double));
-    layer->upsampled = make_image(h,w,n);
+    layer->size = size;
+    layer->pad = pad;
 
-    if(activator == SIGMOID){
-        layer->activation = sigmoid_activation;
-        layer->gradient = sigmoid_gradient;
-    }else if(activator == RELU){
-        layer->activation = relu_activation;
-        layer->gradient = relu_gradient;
-    }else if(activator == IDENTITY){
-        layer->activation = identity_activation;
-        layer->gradient = identity_gradient;
+    layer->filters = calloc(c*n*size*size, sizeof(float));
+    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
+
+    layer->biases = calloc(n, sizeof(float));
+    layer->bias_updates = calloc(n, sizeof(float));
+    float scale = 1./sqrt(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
+    for(i = 0; i < n; ++i){
+        layer->biases[i] = scale;
     }
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
+    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+
+    #ifdef GPU
+    layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
+    layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
+
+    layer->biases_gpu = cuda_make_array(layer->biases, n);
+    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
+
+    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
+    #endif
+    layer->activation = activation;
+
+    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
     return layer;
 }
 
-void forward_convolutional_layer(const convolutional_layer layer, double *in)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
 {
-    image input = double_to_image(layer.h, layer.w, layer.c, in);
-    image output = get_convolutional_image(layer);
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        convolve(input, layer.kernels[i], layer.stride, i, output);
-    }
-    for(i = 0; i < output.c; ++i){
-        for(j = 0; j < output.h*output.w; ++j){
-            int index = i*output.h*output.w + j;
-            output.data[index] += layer.biases[i];
-            output.data[index] = layer.activation(output.data[index]);
+    layer->h = h;
+    layer->w = w;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = realloc(layer->col_image,
+                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+    layer->output = realloc(layer->output,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    layer->delta  = realloc(layer->delta,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+
+    #ifdef GPU
+    cuda_free(layer->col_image_gpu);
+    cuda_free(layer->delta_gpu);
+    cuda_free(layer->output_gpu);
+
+    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
+    #endif
+}
+
+void bias_output(float *output, float *biases, int batch, int n, int size)
+{
+    int i,j,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] = biases[i];
+            }
         }
     }
 }
 
-void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta)
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
 {
-    int i;
-
-    image in_image = double_to_image(layer.h, layer.w, layer.c, input);
-    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
-    image out_delta = get_convolutional_delta(layer);
-    zero_image(in_delta);
-
-    for(i = 0; i < layer.n; ++i){
-        back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta);
-    }
-    for(i = 0; i < layer.h*layer.w*layer.c; ++i){
-        in_delta.data[i] *= layer.gradient(in_image.data[i]);
+    int i,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
+        }
     }
 }
 
-/*
-void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer)
-{
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        rotate_image(layer.kernels[i]);
-    }
 
-    zero_image(input);
-    upsample_image(layer.output, layer.stride, layer.upsampled);
-    for(j = 0; j < input.c; ++j){
+void forward_convolutional_layer(const convolutional_layer layer, network_state state)
+{
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
+    int i;
+
+    bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
+
+    int m = layer.n;
+    int k = layer.size*layer.size*layer.c;
+    int n = out_h*out_w;
+
+    float *a = layer.filters;
+    float *b = layer.col_image;
+    float *c = layer.output;
+
+    for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(state.input, layer.c, layer.h, layer.w, 
+            layer.size, layer.stride, layer.pad, b);
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        c += n*m;
+        state.input += layer.c*layer.h*layer.w;
+    }
+    activate_array(layer.output, m*n*layer.batch, layer.activation);
+}
+
+void backward_convolutional_layer(convolutional_layer layer, network_state state)
+{
+    int i;
+    int m = layer.n;
+    int n = layer.size*layer.size*layer.c;
+    int k = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+
+    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
+    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
+
+    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+    for(i = 0; i < layer.batch; ++i){
+        float *a = layer.delta + i*m*k;
+        float *b = layer.col_image;
+        float *c = layer.filter_updates;
+
+        float *im = state.input+i*layer.c*layer.h*layer.w;
+
+        im2col_cpu(im, layer.c, layer.h, layer.w, 
+                layer.size, layer.stride, layer.pad, b);
+        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
+
+        if(state.delta){
+            a = layer.filters;
+            b = layer.delta + i*m*k;
+            c = layer.col_image;
+
+            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
+
+            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
+        }
+    }
+}
+
+void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+    axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
+
+    axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
+    axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, momentum, layer.filter_updates, 1);
+}
+
+
+image get_convolutional_filter(convolutional_layer layer, int i)
+{
+    int h = layer.size;
+    int w = layer.size;
+    int c = layer.c;
+    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+}
+
+image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
+{
+    image *filters = calloc(layer.n, sizeof(image));
+    int i,j,k,c;
+    if(!prev_filters){
         for(i = 0; i < layer.n; ++i){
-            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j);
+            filters[i] = copy_image(get_convolutional_filter(layer, i));
         }
     }
-
-    for(i = 0; i < layer.n; ++i){
-        rotate_image(layer.kernels[i]);
-    }
-}
-*/
-
-void learn_convolutional_layer(convolutional_layer layer, double *input)
-{
-    int i;
-    image in_image = double_to_image(layer.h, layer.w, layer.c, input);
-    image out_delta = get_convolutional_delta(layer);
-    for(i = 0; i < layer.n; ++i){
-        kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta);
-        layer.bias_updates[i] += avg_image_layer(out_delta, i);
-    }
-}
-
-void update_convolutional_layer(convolutional_layer layer, double step)
-{
-    return;
-    int i,j;
-    for(i = 0; i < layer.n; ++i){
-        layer.biases[i] += step*layer.bias_updates[i];
-        layer.bias_updates[i] = 0;
-        int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
-        for(j = 0; j < pixels; ++j){
-            layer.kernels[i].data[j] += step*layer.kernel_updates[i].data[j];
+    else{
+        image base = prev_filters[0];
+        for(i = 0; i < layer.n; ++i){
+            image filter = get_convolutional_filter(layer, i);
+            filters[i] = make_image(base.h, base.w, base.c);
+            for(j = 0; j < layer.size; ++j){
+                for(k = 0; k < layer.size; ++k){
+                    for(c = 0; c < layer.c; ++c){
+                        float weight = get_pixel(filter, j, k, c);
+                        image prev_filter = copy_image(prev_filters[c]);
+                        scale_image(prev_filter, weight);
+                        add_into_image(prev_filter, filters[i], 0,0);
+                        free_image(prev_filter);
+                    }
+                }
+            }
         }
-        zero_image(layer.kernel_updates[i]);
     }
+    return filters;
 }
 
-void visualize_convolutional_layer(convolutional_layer layer)
+image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
 {
-    int i;
+    image *single_filters = weighted_sum_filters(layer, 0);
+    show_images(single_filters, layer.n, window);
+
+    image delta = get_convolutional_image(layer);
+    image dc = collapse_image_layers(delta, 1);
     char buff[256];
-    //image vis = make_image(layer.n*layer.size, layer.size*layer.kernels[0].c, 3);
-    for(i = 0; i < layer.n; ++i){
-        image k = layer.kernels[i];
-        sprintf(buff, "Kernel %d", i);
-        if(k.c <= 3) show_image(k, buff);
-        else show_image_layers(k, buff);
-    }
+    sprintf(buff, "%s: Output", window);
+    //show_image(dc, buff);
+    //save_image(dc, buff);
+    free_image(dc);
+    return single_filters;
 }
 

--
Gitblit v1.10.0