From f9d5508010c4e67e9b1af6bb8347ba2a3023fa78 Mon Sep 17 00:00:00 2001
From: Constantin Wenger <constantin.wenger@googlemail.com>
Date: Sat, 10 Aug 2019 09:39:10 +0000
Subject: [PATCH] added croping and remembering detected cards as well es putting them in a file on termination

---
 opencv_dnn.py |  423 ++++++++++++++++++++++++++++++++++------------------
 1 files changed, 273 insertions(+), 150 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
index 624aea8..a2c9d3b 100644
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -1,3 +1,4 @@
+import argparse
 import ast
 import collections
 import cv2
@@ -8,24 +9,27 @@
 import pandas as pd
 from PIL import Image
 import time
-
+from multiprocessing import Pool
+from config import Config
 import fetch_data
-import transform_data
 
 
-def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
-    """
-    Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
-    :param card_pool: pandas dataframe containing all card information
-    :param save_to: path for the pickle file to be saved
-    :param hash_size: param for pHash algorithm
-    :param highfreq_factor: param for pHash algorithm
-    :return: pandas dataframe
-    """
-    # Since some double-faced cards may result in two different cards, create a new dataframe to store the result
+"""
+As of the current version, the YOLO network has been removed from this code during optimization.
+It was found out that YOLO was adding too much processing delay, and the benefits from using it couldn't justify
+such heavy cost.
+If you're interested to see the implementation using YOLO, please check out the previous commit:
+https://github.com/hj3yoo/mtg_card_detector/tree/dea64611730c84a59c711c61f7f80948f82bcd31 
+"""
+
+def do_calc(args):
+    card_pool = args[0]
+    hash_size = args[1]
     new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
-    new_pool['card_hash'] = np.NaN
-    #new_pool['art_hash'] = np.NaN
+    for hs in hash_size:
+        new_pool['card_hash_%d' % hs] = np.NaN
+        new_pool['set_hash_%d' % hs] = np.NaN
+        #new_pool['art_hash_%d' % hs] = np.NaN
     for ind, card_info in card_pool.iterrows():
         if ind % 100 == 0:
             print('Calculating hashes: %dth card' % ind)
@@ -45,7 +49,7 @@
         for card_name in card_names:
             # Fetch the image - name can be found based on the card's information
             card_info['name'] = card_name
-            img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
+            img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
                                                          card_info['collector_number'],
                                                          fetch_data.get_valid_filename(card_info['name']))
             card_img = cv2.imread(img_name)
@@ -53,26 +57,53 @@
             # If the image doesn't exist, download it from the URL
             if card_img is None:
                 fetch_data.fetch_card_image(card_info,
-                                            out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
+                                            out_dir='%s/card_img/png/%s' % (Config.data_dir, card_info['set']))
                 card_img = cv2.imread(img_name)
             if card_img is None:
                 print('WARNING: card %s is not found!' % img_name)
+                continue
 
+            set_img = card_img[575:638, 567:700]
+            #cv2.imshow(card_info['name'], set_img)
             # Compute value of the card's perceptual hash, then store it to the database
-            '''
-            img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
-            art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor)
-            card_info['art_hash'] = art_hash
-            '''
+            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
             img_card = Image.fromarray(card_img)
-            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
-            card_info['card_hash'] = card_hash
+            img_set = Image.fromarray(set_img)
+            for hs in hash_size:
+                card_hash = ih.phash(img_card, hash_size=hs)
+                set_hash = ih.whash(img_set, hash_size=hs)
+                card_info['card_hash_%d' % hs] = card_hash
+                card_info['set_hash_%d' % hs] = set_hash
+                #print('Setting set_hash_%d' % hs)
+                #art_hash = ih.phash(img_art, hash_size=hs)
+                #card_info['art_hash_%d' % hs] = art_hash
             new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
+    return new_pool
 
-    # Remove uselesss fields, then pickle it if needed
-    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
-                         'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
-                         'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
+def calc_image_hashes(card_pool, save_to=None, hash_size=None):
+    """
+    Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
+    :param card_pool: pandas dataframe containing all card information
+    :param save_to: path for the pickle file to be saved
+    :param hash_size: param for pHash algorithm
+    :return: pandas dataframe
+    """
+    if hash_size is None:
+        hash_size = [16, 32]
+    elif isinstance(hash_size, int):
+        hash_size = [hash_size]
+
+    num_cores = 15
+    num_partitions = round(card_pool.shape[0]/100)
+    if num_partitions < min(num_cores, card_pool.shape[0]):
+        num_partitions = min(num_cores, card_pool.shape[0])
+    pool = Pool(num_cores)
+    df_split = np.array_split(card_pool, num_partitions)
+    new_pool = pd.concat(pool.map(do_calc, [(split, hash_size) for split in df_split]))
+    pool.close()
+    pool.join()
+    # Since some double-faced cards may result in two different cards, create a new dataframe to store the result
+
     if save_to is not None:
         new_pool.to_pickle(save_to)
     return new_pool
@@ -157,72 +188,6 @@
     return warped
 
 
-'''
-# The following functions are only used in conjunction with YOLO, and is deprecated:
-# - get_outputs_names()
-# - post_process()
-# - draw_pred() 
-# Get the names of the output layers
-def get_outputs_names(net):
-    # Get the names of all the layers in the network
-    layers_names = net.getLayerNames()
-    # Get the names of the output layers, i.e. the layers with unconnected outputs
-    return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
-
-
-# Remove the bounding boxes with low confidence using non-maxima suppression
-# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
-def post_process(frame, outs, thresh_conf, thresh_nms):
-    frame_height = frame.shape[0]
-    frame_width = frame.shape[1]
-
-    # Scan through all the bounding boxes output from the network and keep only the
-    # ones with high confidence scores. Assign the box's class label as the class with the highest score.
-    class_ids = []
-    confidences = []
-    boxes = []
-    for out in outs:
-        for detection in out:
-            scores = detection[5:]
-            class_id = np.argmax(scores)
-            confidence = scores[class_id]
-            if confidence > thresh_conf:
-                center_x = int(detection[0] * frame_width)
-                center_y = int(detection[1] * frame_height)
-                width = int(detection[2] * frame_width)
-                height = int(detection[3] * frame_height)
-                left = int(center_x - width / 2)
-                top = int(center_y - height / 2)
-                class_ids.append(class_id)
-                confidences.append(float(confidence))
-                boxes.append([left, top, width, height])
-
-    # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences.
-    indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)]
-    
-    ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices]
-    return ret
-
-
-# Draw the predicted bounding box
-def draw_pred(frame, class_id, classes, conf, left, top, right, bottom):
-    # Draw a bounding box.
-    cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
-
-    label = '%.2f' % conf
-
-    # Get the label for the class name and its confidence
-    if classes:
-        assert (class_id < len(classes))
-        label = '%s:%s' % (classes[class_id], label)
-
-    # Display the label at the top of the bounding box
-    label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
-    top = max(top, label_size[1])
-    cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
-'''
-
-
 def remove_glare(img):
     """
     Reduce the effect of glaring in the image
@@ -253,7 +218,7 @@
     return corrected
 
 
-def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000):
+def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000, debug=False):
     """
     Find contours of all cards in the image
     :param img: source image
@@ -265,19 +230,29 @@
     # Typical pre-processing - grayscale, blurring, thresholding
     img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
     img_blur = cv2.medianBlur(img_gray, 5)
-    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c)
-
+    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, thresh_c)
+    if debug:
+        cv2.imshow('Thres', img_thresh)
     # Dilute the image, then erode them to remove minor noises
     kernel = np.ones(kernel_size, np.uint8)
     img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
     img_erode = cv2.erode(img_dilate, kernel, iterations=1)
-
+    if debug:
+        cv2.imshow('Eroded', img_erode)
     # Find the contour
-    _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+    cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
     if len(cnts) == 0:
-        print('no contours')
+        #print('no contours')
         return []
-
+    img_cont = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR)
+    img_cont_base = img_cont.copy()
+    cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
+    cnts2 = cnts2[:10]
+    for i in range(0, len(cnts2)):
+        print(i, len(cnts2[i]))
+    if debug:
+        cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3)
+        cv2.imshow('Contours', img_cont)
     # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child
     # their previous and next node
     # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition
@@ -294,7 +269,44 @@
         peri = cv2.arcLength(cnt, True)
         approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
         if size >= size_thresh and len(approx) == 4:
-            cnts_rect.append(approx)
+            # lets see if we got a contour very close in size as child
+            if i_child != -1:
+                img_ccont = img_cont_base.copy()
+                # lets collect all children
+                c_list = [cnts[i_child]]
+                h_info = hier[0][i_child]
+                while h_info[0] != -1:
+                    cld = cnts[h_info[0]]
+                    c_list.append(cld)
+                    h_info = hier[0][h_info[0]]
+                # child with biggest area
+                c_list.sort(key=cv2.contourArea, reverse=True)
+                c_cnt = c_list[0]  # the biggest child
+                if debug:
+                    cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1)
+                    cv2.imshow('CCont %d' % i_cnt, img_ccont)
+                c_size = cv2.contourArea(c_cnt)
+                c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True)
+                if len(c_approx) == 4 and (c_size/size) > 0.85:
+                    rect = cv2.minAreaRect(c_cnt)
+                    box = cv2.boxPoints(rect)
+                    box = np.intp(box)
+                    print(c_cnt)
+                    print(box)
+
+                    print('CSize:', c_size, '%:', c_size/size)
+                    b2 = []
+                    for x in box:
+                        b2.append([x])
+                    cnts_rect.append(np.array(b2))
+                else:
+                    print('CF:', (c_size/size))
+                    print('Size:', size)
+                    cnts_rect.append(approx)
+            else:
+                #print('CF:', (c_size/size))
+                print('Size:', size)
+                cnts_rect.append(approx)
         else:
             if i_child != -1:
                 stack.append((i_child, hier[0][i_child]))
@@ -334,14 +346,16 @@
         card_set = key[key.find('(') + 1:key.find(')')]
         confidence = sum(val) / f_len
         card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0]
-        img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
+        img_name = '%s/card_img/tiny/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
                                                       card_info['collector_number'],
                                                       fetch_data.get_valid_filename(card_info['name']))
         # If the card image is not found, just leave it blank
         if os.path.exists(img_name):
             card_img = cv2.imread(img_name)
         else:
-            card_img = np.ones((h_card, w_card))
+            card_img = np.ones((h_card, w_card, 3)) * 255
+            cv2.putText(card_img, 'X', ((w_card - int(txt_scale * 25)) // 2, (h_card + int(txt_scale * 25)) // 2),
+                        cv2.FONT_HERSHEY_SIMPLEX, txt_scale, (0, 0, 0), 2)
 
         # Insert the card image, card name, and confidence bar to the graph
         img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img
@@ -360,14 +374,13 @@
     return img_graph
 
 
-def detect_frame(img, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000,
+def detect_frame(img, card_pool, hash_size=32, size_thresh=100000,
                  out_path=None, display=True, debug=False):
     """
     Identify all cards in the input frame, display or save the frame if needed
     :param img: input frame
     :param card_pool: pandas dataframe of all card's information
     :param hash_size: param for pHash algorithm
-    :param highfreq_factor: param for pHash algorithm
     :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
     :param out_path: path to save the result
     :param display: flag for displaying the result
@@ -378,7 +391,7 @@
     img_result = img.copy()  # For displaying and saving
     det_cards = []
     # Detect contours of all cards in the image
-    cnts = find_card(img_result, size_thresh=size_thresh)
+    cnts = find_card(img_result, size_thresh=size_thresh, debug=debug)
     for i in range(len(cnts)):
         cnt = cnts[i]
         # For the region of the image covered by the contour, transform them into a rectangular image
@@ -393,26 +406,62 @@
         '''
         img_art = img_warp[47:249, 22:294]
         img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
-        art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten()
+        art_hash = ih.phash(img_art, hash_size=hash_size).hash.flatten()
         card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash))
         '''
         img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
+        img_card_size = img_warp.shape
+        print(img_card_size)
+        cut = [round(img_card_size[0]*0.57),round(img_card_size[0]*0.615),round(img_card_size[1]*0.81),round(img_card_size[1]*0.940)]
+        print(cut)
+        img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]]
+        print(img_set_part.shape)
+        img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB')
+        if debug:
+            cv2.imshow("Set Img#%d" % i, img_set_part)
+
         # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
-        card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten()
-        card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
+        card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten()
+        card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size]
+        card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash))
         min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0]
+        hash_diff = min_card['hash_diff']
+
+        top_matches = sorted(card_pool['hash_diff'])
+        card_one = card_pool[card_pool['hash_diff'] == top_matches[0]].iloc[0]
+        card_two = card_pool[card_pool['hash_diff'] == top_matches[1]].iloc[0]
+
+        if card_one['name'] == card_two['name'] and card_one['set'] != card_two['set']:
+            set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten()
+            cd_data = pd.DataFrame(columns=list(card_pool.columns.values))
+            print(list(card_pool.columns.values))
+            candidates = []
+            for ix in range(0, 2):
+                cd = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0]
+                cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cd
+                print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
+
+
+            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size]
+            cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash))
+            conf = sorted(cd_data['set_hash_diff'])
+            print('Confs:', conf)
+            best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0]
+            print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set'])
+
+            min_card = best_match
         card_name = min_card['name']
         card_set = min_card['set']
         det_cards.append((card_name, card_set))
-        hash_diff = min_card['hash_diff']
 
         # Render the result, and display them if needed
         cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2)
-        cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
+        cv2.putText(img_result, card_name, (min(pts[0][0], pts[1][0]), min(pts[0][1], pts[1][1])),
+                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
         if debug:
             # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
-            cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
-                        cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
+            cv2.putText(img_warp, card_name + ':' + card_set + ', ' + str(hash_diff), (0, 20),
+                        cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
             cv2.imshow('card#%d' % i, img_warp)
     if display:
         cv2.imshow('Result', img_result)
@@ -423,14 +472,13 @@
     return det_cards, img_result
 
 
-def detect_video(capture, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000,
-                 out_path=None, display=True, show_graph=True, debug=False):
+def detect_video(capture, card_pool, hash_size=32, size_thresh=10000,
+                 out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0):
     """
     Identify all cards in the continuous video stream, display or save the result if needed
     :param capture: input video stream
     :param card_pool: pandas dataframe of all card's information
     :param hash_size: param for pHash algorithm
-    :param highfreq_factor: param for pHash algorithm
     :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
     :param out_path: path to save the result
     :param display: flag for displaying the result
@@ -442,8 +490,9 @@
     # Get the dimension of the output video, and set it up
     if show_graph:
         img_graph = draw_card_graph({}, pd.DataFrame(), -1)  # Black image of the graph just to get the dimension
-        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1]
-        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0])
+        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x  + img_graph.shape[1]
+        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0])
+        height += 200  # some space to display last detected cards
     else:
         width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
         height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
@@ -452,9 +501,15 @@
     max_num_obj = 0
     f_len = 10  # number of frames to consider to check for existing cards
     exist_cards = {}
+
+    exist_card_single = {}
+    written_out_cards = set()
+    found_cards = []
     try:
         while True:
             ret, frame = capture.read()
+            croped_img = frame[crop_y:-crop_y, crop_x:-crop_x]
+            fimg = cv2.flip(croped_img, -1)
             start_time = time.time()
             if not ret:
                 # End of video
@@ -462,8 +517,8 @@
                 cv2.waitKey(0)
                 break
             # Detect all cards from the current frame
-            det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, highfreq_factor=highfreq_factor,
-                                                 size_thresh=size_thresh, out_path=None, display=False, debug=debug)
+            det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh,
+                                                 out_path=None, display=False, debug=debug)
             if show_graph:
                 # If the card was already detected in the previous frame, append 1 to the list
                 # If the card previously detected was not found in this trame, append 0 to the list
@@ -484,18 +539,50 @@
                     else:
                         exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
                     if len(val) == f_len and sum(val) == 0:
-                        gone.append(key)
+                        gone.append(key)  # not there anymore
+
+                det_card_map = {}
+                gone_single =  []
+                for card_name, card_set in det_cards:
+                    skey = '%s (%s)' % (card_name, card_set)
+                    det_card_map[skey] = (card_name, card_set)
+
+                for key, val in exist_card_single.items():
+                    if key in det_card_map:
+                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [1]
+                    else:
+                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [0]
+
+                    if len(val) == f_len and sum(val) == 0:
+                        gone_single.append(key)
+                        if key in written_out_cards:
+                            written_out_cards.remove(key)
+                    if len(val) == f_len and sum(val) == f_len:
+                        if key not in written_out_cards and key in det_card_map:
+                            written_out_cards.add(key)
+                            found_cards.append(det_card_map[key])
+
+                for key in det_card_map:
+                    if key not in exist_card_single.keys():
+                        exist_card_single[key] = [1]
+                for key in gone_single:
+                    exist_card_single.pop(key)
+
+
                 for key in det_cards_list:
                     if key not in exist_cards.keys():
                         exist_cards[key] = [1]
                 for key in gone:
                     exist_cards.pop(key)
 
+
                 # Draw the graph based on the history of detected cards, then concatenate it with the result image
                 img_graph = draw_card_graph(exist_cards, card_pool, f_len)
                 img_save = np.zeros((height, width, 3), dtype=np.uint8)
                 img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
                 img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
+                for c, card in enumerate(reversed(found_cards[-10:]), 1):
+                    cv2.putText(img_save, f'{card[0]} ({card[1].upper()})',(0, height-200+18*c), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
             else:
                 img_save = img_result
 
@@ -518,66 +605,102 @@
             vid_writer.release()
         cv2.destroyAllWindows()
 
+        with open('detect.txt', 'w') as of:
+            counter = collections.Counter(found_cards)
+            for key in counter:
+                of.write(f'{counter[key]} [{key[1].upper()}] {key[0]}\n')
 
-def main():
+
+
+def main(args):
     # Specify paths for all necessary files
-    #test_path = os.path.abspath('test_file/test4.mp4')
-    test_path = None
-    out_dir = 'out'
-    hash_size = 32
-    highfreq_factor = 4
-
-    pck_path = os.path.abspath('card_pool_%d_%d.pck' % (hash_size, highfreq_factor))
+    hash_sizes = {16, 32}
+    hash_sizes.add(args.hash_size)
+    pck_path = os.path.abspath('card_pool.pck')
     if os.path.isfile(pck_path):
         card_pool = pd.read_pickle(pck_path)
     else:
+        print('Warning: pickle for card database %s is not found!' % pck_path)
         # Merge database for all cards, then calculate pHash values of each, store them
         df_list = []
-        for set_name in fetch_data.all_set_list:
-            csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
+        for set_name in Config.all_set_list:
+            csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name)
             df = fetch_data.load_all_cards_text(csv_name)
             df_list.append(df)
         card_pool = pd.concat(df_list, sort=True)
         card_pool.reset_index(drop=True, inplace=True)
         card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
+        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_sizes)
+    ch_key = 'card_hash_%d' % args.hash_size
+    set_key = 'set_hash_%d' % args.hash_size
+    if ch_key not in card_pool.columns:
+        # we did not generate this hash_size yet
+        print('We need to add hash_size=%d' % (args.hash_size,))
+        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=[args.hash_size])
 
-        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_size, highfreq_factor=highfreq_factor)
-    card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
+    card_pool = card_pool[['name', 'set', 'collector_number', ch_key, set_key]]
+
+    # Processing time is almost linear to the size of the database
+    # Program can be much faster if the search scope for the card can be reduced
+    card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)]
 
     # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
     # significantly increases speed for subtracting hashes in the future.
-    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
-
+    card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten())
+    card_pool[set_key] = card_pool[set_key].apply(lambda x: x.hash.flatten())
 
     # If the test file isn't given, use webcam to capture video
-    if test_path is None:
-        capture = cv2.VideoCapture(0)
-        detect_video(capture, card_pool, out_path='%s/result.avi' % out_dir, display=True, show_graph=True, debug=False)
+    if args.in_path is None:
+        capture = cv2.VideoCapture(0, cv2.CAP_V4L)
+        capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
+        capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
+        capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
+        detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
+                     display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200)
         capture.release()
     else:
-        # Save the detection result if out_dir is provided
-        if out_dir is None or out_dir == '':
+        # Save the detection result if args.out_path is provided
+        if args.out_path is None:
             out_path = None
         else:
-            f_name = os.path.split(test_path)[1]
-            out_path = '%s/%s.avi' % (out_dir, f_name[:f_name.find('.')])
+            f_name = os.path.split(args.in_path)[1]
+            out_path = '%s/%s.avi' % (args.out_path, f_name[:f_name.find('.')])
 
-        if not os.path.isfile(test_path):
-            print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
+        if not os.path.isfile(args.in_path):
+            print('The test file %s doesn\'t exist!' % os.path.abspath(args.in_path))
             return
         # Check if test file is image or video
-        test_ext = test_path[test_path.find('.') + 1:]
+        test_ext = args.in_path[args.in_path.find('.') + 1:]
         if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
             # Test file is an image
-            img = cv2.imread(test_path)
-            detect_frame(img, card_pool, out_path=out_path)
+            img = cv2.imread(args.in_path)
+            detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
+                         debug=args.debug)
         else:
             # Test file is a video
-            capture = cv2.VideoCapture(test_path)
-            detect_video(capture, card_pool, out_path=out_path, display=True, show_graph=True, debug=False)
+            capture = cv2.VideoCapture(args.in_path)
+            detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
+                         show_graph=args.show_graph, debug=args.debug)
             capture.release()
     pass
 
 
 if __name__ == '__main__':
-    main()
+    parser = argparse.ArgumentParser()
+    parser.add_argument('-i', '--in', dest='in_path', help='Path of the input file. For webcam, leave it blank',
+                        type=str)
+    parser.add_argument('-o', '--out', dest='out_path', help='Path of the output directory to save the result',
+                        type=str)
+    parser.add_argument('-hs', '--hash_size', dest='hash_size',
+                        help='Size of the hash for pHash algorithm', type=int, default=16)
+    parser.add_argument('-dsp', '--display', dest='display', help='Display the result', action='store_true',
+                        default=False)
+    parser.add_argument('-dbg', '--debug', dest='debug', help='Enable debug mode', action='store_true', default=False)
+    parser.add_argument('-gph', '--show_graph', dest='show_graph', help='Display the graph for video output', 
+                        action='store_true', default=False)
+    args = parser.parse_args()
+    if not args.display and args.out_path is None:
+        # Then why the heck are you running this thing in the first place?
+        print('The program isn\'t displaying nor saving any output file. Please change the setting and try again.')
+        exit()
+    main(args)

--
Gitblit v1.10.0