From fc9b867dd9c9a6d38d7fe478217060e11b9e7e1b Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 16 Nov 2016 08:15:46 +0000
Subject: [PATCH] :fire: :fire: :dragonite:

---
 src/parser.c |  124 ++++++++++++++++++++++++++++++----------
 1 files changed, 92 insertions(+), 32 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index e04c6c2..cde06b4 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -2,32 +2,32 @@
 #include <string.h>
 #include <stdlib.h>
 
-#include "blas.h"
-#include "parser.h"
-#include "assert.h"
-#include "activations.h"
-#include "crop_layer.h"
-#include "cost_layer.h"
-#include "convolutional_layer.h"
 #include "activation_layer.h"
-#include "normalization_layer.h"
-#include "batchnorm_layer.h"
-#include "connected_layer.h"
-#include "rnn_layer.h"
-#include "gru_layer.h"
-#include "crnn_layer.h"
-#include "maxpool_layer.h"
-#include "reorg_layer.h"
-#include "softmax_layer.h"
-#include "dropout_layer.h"
-#include "detection_layer.h"
-#include "region_layer.h"
+#include "activations.h"
+#include "assert.h"
 #include "avgpool_layer.h"
+#include "batchnorm_layer.h"
+#include "blas.h"
+#include "connected_layer.h"
+#include "convolutional_layer.h"
+#include "cost_layer.h"
+#include "crnn_layer.h"
+#include "crop_layer.h"
+#include "detection_layer.h"
+#include "dropout_layer.h"
+#include "gru_layer.h"
+#include "list.h"
 #include "local_layer.h"
+#include "maxpool_layer.h"
+#include "normalization_layer.h"
+#include "option_list.h"
+#include "parser.h"
+#include "region_layer.h"
+#include "reorg_layer.h"
+#include "rnn_layer.h"
 #include "route_layer.h"
 #include "shortcut_layer.h"
-#include "list.h"
-#include "option_list.h"
+#include "softmax_layer.h"
 #include "utils.h"
 
 typedef struct{
@@ -111,6 +111,7 @@
     int c;
     int index;
     int time_steps;
+    network net;
 } size_params;
 
 local_layer parse_local(list *options, size_params params)
@@ -156,9 +157,14 @@
     int binary = option_find_int_quiet(options, "binary", 0);
     int xnor = option_find_int_quiet(options, "xnor", 0);
 
-    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor);
+    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor, params.net.adam);
     layer.flipped = option_find_int_quiet(options, "flipped", 0);
     layer.dot = option_find_float_quiet(options, "dot", 0);
+    if(params.net.adam){
+        layer.B1 = params.net.B1;
+        layer.B2 = params.net.B2;
+        layer.eps = params.net.eps;
+    }
 
     return layer;
 }
@@ -246,10 +252,36 @@
     l.jitter = option_find_float(options, "jitter", .2);
     l.rescore = option_find_int_quiet(options, "rescore",0);
 
+    l.thresh = option_find_float(options, "thresh", .5);
+    l.classfix = option_find_int_quiet(options, "classfix", 0);
+    l.absolute = option_find_int_quiet(options, "absolute", 0);
+    l.random = option_find_int_quiet(options, "random", 0);
+
     l.coord_scale = option_find_float(options, "coord_scale", 1);
     l.object_scale = option_find_float(options, "object_scale", 1);
     l.noobject_scale = option_find_float(options, "noobject_scale", 1);
     l.class_scale = option_find_float(options, "class_scale", 1);
+    l.bias_match = option_find_int_quiet(options, "bias_match",0);
+
+    char *tree_file = option_find_str(options, "tree", 0);
+    if (tree_file) l.softmax_tree = read_tree(tree_file);
+    char *map_file = option_find_str(options, "map", 0);
+    if (map_file) l.map = read_map(map_file);
+
+    char *a = option_find_str(options, "anchors", 0);
+    if(a){
+        int len = strlen(a);
+        int n = 1;
+        int i;
+        for(i = 0; i < len; ++i){
+            if (a[i] == ',') ++n;
+        }
+        for(i = 0; i < n; ++i){
+            float bias = atof(a);
+            l.biases[i] = bias;
+            a = strchr(a, ',')+1;
+        }
+    }
     return l;
 }
 detection_layer parse_detection(list *options, size_params params)
@@ -313,6 +345,7 @@
 layer parse_reorg(list *options, size_params params)
 {
     int stride = option_find_int(options, "stride",1);
+    int reverse = option_find_int_quiet(options, "reverse",0);
 
     int batch,h,w,c;
     h = params.h;
@@ -321,7 +354,7 @@
     batch=params.batch;
     if(!(h && w && c)) error("Layer before reorg layer must output image.");
 
-    layer layer = make_reorg_layer(batch,w,h,c,stride);
+    layer layer = make_reorg_layer(batch,w,h,c,stride,reverse);
     return layer;
 }
 
@@ -482,6 +515,13 @@
     net->batch *= net->time_steps;
     net->subdivisions = subdivs;
 
+    net->adam = option_find_int_quiet(options, "adam", 0);
+    if(net->adam){
+        net->B1 = option_find_float(options, "B1", .9);
+        net->B2 = option_find_float(options, "B2", .999);
+        net->eps = option_find_float(options, "eps", .000001);
+    }
+
     net->h = option_find_int_quiet(options, "height",0);
     net->w = option_find_int_quiet(options, "width",0);
     net->c = option_find_int_quiet(options, "channels",0);
@@ -564,14 +604,16 @@
     params.inputs = net.inputs;
     params.batch = net.batch;
     params.time_steps = net.time_steps;
+    params.net = net;
 
     size_t workspace_size = 0;
     n = n->next;
     int count = 0;
     free_section(s);
+    fprintf(stderr, "layer     filters    size              input                output\n");
     while(n){
         params.index = count;
-        fprintf(stderr, "%d: ", count);
+        fprintf(stderr, "%5d ", count);
         s = (section *)n->val;
         options = s->options;
         layer l = {0};
@@ -745,6 +787,10 @@
         fwrite(l.rolling_variance, sizeof(float), l.n, fp);
     }
     fwrite(l.weights, sizeof(float), num, fp);
+    if(l.adam){
+        fwrite(l.m, sizeof(float), num, fp);
+        fwrite(l.v, sizeof(float), num, fp);
+    }
 }
 
 void save_batchnorm_weights(layer l, FILE *fp)
@@ -779,7 +825,7 @@
 {
 #ifdef GPU
     if(net.gpu_index >= 0){
-    cuda_set_device(net.gpu_index);
+        cuda_set_device(net.gpu_index);
     }
 #endif
     fprintf(stderr, "Saving weights to %s\n", filename);
@@ -923,13 +969,27 @@
         //return;
     }
     int num = l.n*l.c*l.size*l.size;
-    fread(l.biases, sizeof(float), l.n, fp);
-    if (l.batch_normalize && (!l.dontloadscales)){
-        fread(l.scales, sizeof(float), l.n, fp);
-        fread(l.rolling_mean, sizeof(float), l.n, fp);
-        fread(l.rolling_variance, sizeof(float), l.n, fp);
+    if(0){
+        fread(l.biases + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
+        if (l.batch_normalize && (!l.dontloadscales)){
+            fread(l.scales + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
+            fread(l.rolling_mean + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
+            fread(l.rolling_variance + ((l.n != 1374)?0:5), sizeof(float), l.n, fp);
+        }
+        fread(l.weights + ((l.n != 1374)?0:5*l.c*l.size*l.size), sizeof(float), num, fp);
+    }else{
+        fread(l.biases, sizeof(float), l.n, fp);
+        if (l.batch_normalize && (!l.dontloadscales)){
+            fread(l.scales, sizeof(float), l.n, fp);
+            fread(l.rolling_mean, sizeof(float), l.n, fp);
+            fread(l.rolling_variance, sizeof(float), l.n, fp);
+        }
+        fread(l.weights, sizeof(float), num, fp);
     }
-    fread(l.weights, sizeof(float), num, fp);
+    if(l.adam){
+        fread(l.m, sizeof(float), num, fp);
+        fread(l.v, sizeof(float), num, fp);
+    }
     //if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1);
     if (l.flipped) {
         transpose_matrix(l.weights, l.c*l.size*l.size, l.n);
@@ -947,7 +1007,7 @@
 {
 #ifdef GPU
     if(net->gpu_index >= 0){
-    cuda_set_device(net->gpu_index);
+        cuda_set_device(net->gpu_index);
     }
 #endif
     fprintf(stderr, "Loading weights from %s...", filename);

--
Gitblit v1.10.0