From fe6e694e177b7c85d9a54734d2ba602b03159536 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 13 Sep 2017 10:47:19 +0000
Subject: [PATCH] Fixed yolo_console_dll.cpp

---
 scripts/voc_eval.py      |  200 +++++++++++++++++++++++++++++++++
 src/yolo_console_dll.cpp |    2 
 scripts/reval_voc.py     |  101 ++++++++++++++++
 3 files changed, 302 insertions(+), 1 deletions(-)

diff --git a/scripts/reval_voc.py b/scripts/reval_voc.py
new file mode 100644
index 0000000..1164f88
--- /dev/null
+++ b/scripts/reval_voc.py
@@ -0,0 +1,101 @@
+#!/usr/bin/env python
+
+# Adapt from ->
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick
+# --------------------------------------------------------
+# <- Written by Yaping Sun
+
+"""Reval = re-eval. Re-evaluate saved detections."""
+
+import os, sys, argparse
+import numpy as np
+import cPickle
+
+from voc_eval import voc_eval
+
+def parse_args():
+    """
+    Parse input arguments
+    """
+    parser = argparse.ArgumentParser(description='Re-evaluate results')
+    parser.add_argument('output_dir', nargs=1, help='results directory',
+                        type=str)
+    parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
+    parser.add_argument('--year', dest='year', default='2017', type=str)
+    parser.add_argument('--image_set', dest='image_set', default='test', type=str)
+
+    parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str)
+
+    if len(sys.argv) == 1:
+        parser.print_help()
+        sys.exit(1)
+
+    args = parser.parse_args()
+    return args
+
+def get_voc_results_file_template(image_set, out_dir = 'results'):
+    filename = 'comp4_det_' + image_set + '_{:s}.txt'
+    path = os.path.join(out_dir, filename)
+    return path
+
+def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'):
+    annopath = os.path.join(
+        devkit_path,
+        'VOC' + year,
+        'Annotations',
+        '{:s}.xml')
+    imagesetfile = os.path.join(
+        devkit_path,
+        'VOC' + year,
+        'ImageSets',
+        'Main',
+        image_set + '.txt')
+    cachedir = os.path.join(devkit_path, 'annotations_cache')
+    aps = []
+    # The PASCAL VOC metric changed in 2010
+    use_07_metric = True if int(year) < 2010 else False
+    print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No')
+    if not os.path.isdir(output_dir):
+        os.mkdir(output_dir)
+    for i, cls in enumerate(classes):
+        if cls == '__background__':
+            continue
+        filename = get_voc_results_file_template(image_set).format(cls)
+        rec, prec, ap = voc_eval(
+            filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
+            use_07_metric=use_07_metric)
+        aps += [ap]
+        print('AP for {} = {:.4f}'.format(cls, ap))
+        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
+            cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
+    print('Mean AP = {:.4f}'.format(np.mean(aps)))
+    print('~~~~~~~~')
+    print('Results:')
+    for ap in aps:
+        print('{:.3f}'.format(ap))
+    print('{:.3f}'.format(np.mean(aps)))
+    print('~~~~~~~~')
+    print('')
+    print('--------------------------------------------------------------')
+    print('Results computed with the **unofficial** Python eval code.')
+    print('Results should be very close to the official MATLAB eval code.')
+    print('-- Thanks, The Management')
+    print('--------------------------------------------------------------')
+
+
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    output_dir = os.path.abspath(args.output_dir[0])
+    with open(args.class_file, 'r') as f:
+        lines = f.readlines()
+
+    classes = [t.strip('\n') for t in lines]
+
+    print 'Evaluating detections'
+    do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)
diff --git a/scripts/voc_eval.py b/scripts/voc_eval.py
new file mode 100644
index 0000000..3b69331
--- /dev/null
+++ b/scripts/voc_eval.py
@@ -0,0 +1,200 @@
+# --------------------------------------------------------
+# Fast/er R-CNN
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Bharath Hariharan
+# --------------------------------------------------------
+
+import xml.etree.ElementTree as ET
+import os
+import cPickle
+import numpy as np
+
+def parse_rec(filename):
+    """ Parse a PASCAL VOC xml file """
+    tree = ET.parse(filename)
+    objects = []
+    for obj in tree.findall('object'):
+        obj_struct = {}
+        obj_struct['name'] = obj.find('name').text
+        #obj_struct['pose'] = obj.find('pose').text
+        #obj_struct['truncated'] = int(obj.find('truncated').text)
+        obj_struct['difficult'] = int(obj.find('difficult').text)
+        bbox = obj.find('bndbox')
+        obj_struct['bbox'] = [int(bbox.find('xmin').text),
+                              int(bbox.find('ymin').text),
+                              int(bbox.find('xmax').text),
+                              int(bbox.find('ymax').text)]
+        objects.append(obj_struct)
+
+    return objects
+
+def voc_ap(rec, prec, use_07_metric=False):
+    """ ap = voc_ap(rec, prec, [use_07_metric])
+    Compute VOC AP given precision and recall.
+    If use_07_metric is true, uses the
+    VOC 07 11 point method (default:False).
+    """
+    if use_07_metric:
+        # 11 point metric
+        ap = 0.
+        for t in np.arange(0., 1.1, 0.1):
+            if np.sum(rec >= t) == 0:
+                p = 0
+            else:
+                p = np.max(prec[rec >= t])
+            ap = ap + p / 11.
+    else:
+        # correct AP calculation
+        # first append sentinel values at the end
+        mrec = np.concatenate(([0.], rec, [1.]))
+        mpre = np.concatenate(([0.], prec, [0.]))
+
+        # compute the precision envelope
+        for i in range(mpre.size - 1, 0, -1):
+            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
+
+        # to calculate area under PR curve, look for points
+        # where X axis (recall) changes value
+        i = np.where(mrec[1:] != mrec[:-1])[0]
+
+        # and sum (\Delta recall) * prec
+        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
+    return ap
+
+def voc_eval(detpath,
+             annopath,
+             imagesetfile,
+             classname,
+             cachedir,
+             ovthresh=0.5,
+             use_07_metric=False):
+    """rec, prec, ap = voc_eval(detpath,
+                                annopath,
+                                imagesetfile,
+                                classname,
+                                [ovthresh],
+                                [use_07_metric])
+
+    Top level function that does the PASCAL VOC evaluation.
+
+    detpath: Path to detections
+        detpath.format(classname) should produce the detection results file.
+    annopath: Path to annotations
+        annopath.format(imagename) should be the xml annotations file.
+    imagesetfile: Text file containing the list of images, one image per line.
+    classname: Category name (duh)
+    cachedir: Directory for caching the annotations
+    [ovthresh]: Overlap threshold (default = 0.5)
+    [use_07_metric]: Whether to use VOC07's 11 point AP computation
+        (default False)
+    """
+    # assumes detections are in detpath.format(classname)
+    # assumes annotations are in annopath.format(imagename)
+    # assumes imagesetfile is a text file with each line an image name
+    # cachedir caches the annotations in a pickle file
+
+    # first load gt
+    if not os.path.isdir(cachedir):
+        os.mkdir(cachedir)
+    cachefile = os.path.join(cachedir, 'annots.pkl')
+    # read list of images
+    with open(imagesetfile, 'r') as f:
+        lines = f.readlines()
+    imagenames = [x.strip() for x in lines]
+
+    if not os.path.isfile(cachefile):
+        # load annots
+        recs = {}
+        for i, imagename in enumerate(imagenames):
+            recs[imagename] = parse_rec(annopath.format(imagename))
+            if i % 100 == 0:
+                print 'Reading annotation for {:d}/{:d}'.format(
+                    i + 1, len(imagenames))
+        # save
+        print 'Saving cached annotations to {:s}'.format(cachefile)
+        with open(cachefile, 'w') as f:
+            cPickle.dump(recs, f)
+    else:
+        # load
+        with open(cachefile, 'r') as f:
+            recs = cPickle.load(f)
+
+    # extract gt objects for this class
+    class_recs = {}
+    npos = 0
+    for imagename in imagenames:
+        R = [obj for obj in recs[imagename] if obj['name'] == classname]
+        bbox = np.array([x['bbox'] for x in R])
+        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
+        det = [False] * len(R)
+        npos = npos + sum(~difficult)
+        class_recs[imagename] = {'bbox': bbox,
+                                 'difficult': difficult,
+                                 'det': det}
+
+    # read dets
+    detfile = detpath.format(classname)
+    with open(detfile, 'r') as f:
+        lines = f.readlines()
+
+    splitlines = [x.strip().split(' ') for x in lines]
+    image_ids = [x[0] for x in splitlines]
+    confidence = np.array([float(x[1]) for x in splitlines])
+    BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
+
+    # sort by confidence
+    sorted_ind = np.argsort(-confidence)
+    sorted_scores = np.sort(-confidence)
+    BB = BB[sorted_ind, :]
+    image_ids = [image_ids[x] for x in sorted_ind]
+
+    # go down dets and mark TPs and FPs
+    nd = len(image_ids)
+    tp = np.zeros(nd)
+    fp = np.zeros(nd)
+    for d in range(nd):
+        R = class_recs[image_ids[d]]
+        bb = BB[d, :].astype(float)
+        ovmax = -np.inf
+        BBGT = R['bbox'].astype(float)
+
+        if BBGT.size > 0:
+            # compute overlaps
+            # intersection
+            ixmin = np.maximum(BBGT[:, 0], bb[0])
+            iymin = np.maximum(BBGT[:, 1], bb[1])
+            ixmax = np.minimum(BBGT[:, 2], bb[2])
+            iymax = np.minimum(BBGT[:, 3], bb[3])
+            iw = np.maximum(ixmax - ixmin + 1., 0.)
+            ih = np.maximum(iymax - iymin + 1., 0.)
+            inters = iw * ih
+
+            # union
+            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
+                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
+                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
+
+            overlaps = inters / uni
+            ovmax = np.max(overlaps)
+            jmax = np.argmax(overlaps)
+
+        if ovmax > ovthresh:
+            if not R['difficult'][jmax]:
+                if not R['det'][jmax]:
+                    tp[d] = 1.
+                    R['det'][jmax] = 1
+                else:
+                    fp[d] = 1.
+        else:
+            fp[d] = 1.
+
+    # compute precision recall
+    fp = np.cumsum(fp)
+    tp = np.cumsum(tp)
+    rec = tp / float(npos)
+    # avoid divide by zero in case the first detection matches a difficult
+    # ground truth
+    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
+    ap = voc_ap(rec, prec, use_07_metric)
+
+    return rec, prec, ap
diff --git a/src/yolo_console_dll.cpp b/src/yolo_console_dll.cpp
index 7618a09..ffa5c45 100644
--- a/src/yolo_console_dll.cpp
+++ b/src/yolo_console_dll.cpp
@@ -70,7 +70,7 @@
 	std::ifstream file(filename);
 	std::vector<std::string> file_lines;
 	if (!file.is_open()) return file_lines;
-	for(std::string line; file >> line;) file_lines.push_back(line);
+	for(std::string line; getline(file, line);) file_lines.push_back(line);
 	std::cout << "object names loaded \n";
 	return file_lines;
 }

--
Gitblit v1.10.0