From ff67f0347653c35c67ddbafad8dc76bbd868047e Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 03 Dec 2014 16:48:07 +0000
Subject: [PATCH] Starting on server/client

---
 src/convolutional_layer.c |  251 ++++++++++++++++++++++++++++++++++++++++---------
 1 files changed, 204 insertions(+), 47 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 44e9244..77e6483 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -2,6 +2,7 @@
 #include "utils.h"
 #include "mini_blas.h"
 #include <stdio.h>
+#include <time.h>
 
 int convolutional_out_height(convolutional_layer layer)
 {
@@ -37,11 +38,16 @@
     return float_to_image(h,w,c,layer.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
     int i;
     size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+
+    layer->learning_rate = learning_rate;
+    layer->momentum = momentum;
+    layer->decay = decay;
+
     layer->h = h;
     layer->w = w;
     layer->c = c;
@@ -59,7 +65,8 @@
     layer->bias_updates = calloc(n, sizeof(float));
     layer->bias_momentum = calloc(n, sizeof(float));
     float scale = 1./(size*size*c);
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
+    scale = .05;
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
     for(i = 0; i < n; ++i){
         //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = .5;
@@ -79,7 +86,7 @@
     layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
     layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
 
-    layer->col_image_cl = cl_make_array(layer->col_image, layer.batch*out_h*out_w*size*size*c);
+    layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
     layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
     layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
     #endif
@@ -136,42 +143,17 @@
     float *b = layer.col_image;
     float *c = layer.output;
 
+    im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w, 
+        layer.size, layer.stride, layer.pad, b);
+
     for(i = 0; i < layer.batch; ++i){
-        im2col_cpu(in, layer.c, layer.h, layer.w, 
-            layer.size, layer.stride, layer.pad, b);
         gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-        c += n*m;
-        in += layer.h*layer.w*layer.c;
         b += k*n;
+        c += n*m;
     }
-    /*
-    int i;
-    for(i = 0; i < m*n; ++i) printf("%f, ", layer.output[i]);
-    printf("\n");
-    */
-    activate_array(layer.output, m*n*layer.batch, layer.activation, 0.);
+    activate_array(layer.output, m*n*layer.batch, layer.activation);
 }
 
-#ifdef GPU
-void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
-{
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = convolutional_out_height(layer)*
-        convolutional_out_width(layer)*
-        layer.batch;
-
-    cl_write_array(layer.filters_cl, layer.filters, m*k);
-    cl_mem a = layer.filters_cl;
-    cl_mem b = layer.col_image_cl;
-    cl_mem c = layer.output_cl;
-    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
-    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,0,c,n);
-    activate_array_ongpu(layer.output_cl, m*n, layer.activation, 0.);
-    cl_read_array(layer.output_cl, layer.output, m*n);
-}
-#endif
-
 void learn_bias_convolutional_layer(convolutional_layer layer)
 {
     int i,b;
@@ -179,7 +161,7 @@
         *convolutional_out_width(layer);
     for(b = 0; b < layer.batch; ++b){
         for(i = 0; i < layer.n; ++i){
-            layer.bias_updates[i] += mean_array(layer.delta+size*(i+b*layer.n), size);
+            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
         }
     }
 }
@@ -214,26 +196,27 @@
         b = layer.delta;
         c = layer.col_image;
 
-        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
-
         for(i = 0; i < layer.batch; ++i){
             gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            col2im_cpu(c, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
-            c += k*n;
-            delta += layer.h*layer.w*layer.c;
+            b += k*n;
+            c += m*n;
         }
+
+        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+        col2im_cpu(layer.col_image, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
     }
 }
 
-void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
+void update_convolutional_layer(convolutional_layer layer)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_cpu(layer.n, step, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
+    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
 
-    scal_cpu(size, 1.-step*decay, layer.filters, 1);
-    axpy_cpu(size, step, layer.filter_updates, 1, layer.filters, 1);
-    scal_cpu(size, momentum, layer.filter_updates, 1);
+    scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
+    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
 }
 
 
@@ -284,9 +267,183 @@
     image dc = collapse_image_layers(delta, 1);
     char buff[256];
     sprintf(buff, "%s: Output", window);
-    show_image(dc, buff);
-    save_image(dc, buff);
+    //show_image(dc, buff);
+    //save_image(dc, buff);
     free_image(dc);
     return single_filters;
 }
 
+#ifdef GPU
+
+cl_kernel get_convolutional_learn_bias_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
+{
+    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
+
+    cl_setup();
+    cl_kernel kernel = get_convolutional_learn_bias_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.n};
+
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+cl_kernel get_convolutional_bias_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void bias_output_gpu(const convolutional_layer layer)
+{
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
+    int size = out_h*out_w;
+
+    cl_setup();
+    cl_kernel kernel = get_convolutional_bias_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.n*size, layer.batch};
+
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+//#define TIMEIT
+
+void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
+{
+    int i;
+    int m = layer.n;
+    int k = layer.size*layer.size*layer.c;
+    int n = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+
+    bias_output_gpu(layer);
+
+    #ifdef TIMEIT
+    clock_t time = clock();
+    printf("Forward\n");
+    #endif
+
+    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+
+    #ifdef TIMEIT
+    clFinish(cl.queue);
+    printf("Im2col %f\n", sec(clock()-time));
+    time = clock();
+    #endif
+
+    for(i = 0; i < layer.batch; ++i){
+        cl_mem a = layer.filters_cl;
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.output_cl;
+        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n);
+    }
+    #ifdef TIMEIT
+    clFinish(cl.queue);
+    printf("Gemm %f\n", sec(clock()-time));
+    #endif
+    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
+    #ifdef TIMEIT
+    cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
+    #endif
+}
+
+void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
+{
+    int i;
+    int m = layer.n;
+    int n = layer.size*layer.size*layer.c;
+    int k = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
+    learn_bias_convolutional_layer_ongpu(layer);
+
+    for(i = 0; i < layer.batch; ++i){
+        cl_mem a = layer.delta_cl;
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.filter_updates_cl;
+
+        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
+    }
+
+    if(delta_cl){
+        m = layer.size*layer.size*layer.c;
+        k = layer.n;
+        n = convolutional_out_height(layer)*
+            convolutional_out_width(layer);
+
+        for(i = 0; i < layer.batch; ++i){
+            cl_mem a = layer.filters_cl;
+            cl_mem b = layer.delta_cl;
+            cl_mem c = layer.col_image_cl;
+
+            gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n);
+        }
+
+        scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
+        col2im_ongpu(layer.col_image_cl, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
+    }
+}
+
+void pull_convolutional_layer(convolutional_layer layer)
+{
+    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.biases_cl, layer.biases, layer.n);
+}
+
+void push_convolutional_layer(convolutional_layer layer)
+{
+    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_write_array(layer.biases_cl, layer.biases, layer.n);
+}
+
+void update_convolutional_layer_gpu(convolutional_layer layer)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
+    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
+
+    scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
+    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
+    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
+    pull_convolutional_layer(layer);
+}
+
+
+#endif
+

--
Gitblit v1.10.0