From b95bf33cb5b296efb70a0c4b1c82c0f62286f52a Mon Sep 17 00:00:00 2001
From: Constantin Wenger <constantin.wenger@googlemail.com>
Date: Thu, 03 Feb 2022 20:18:17 +0000
Subject: [PATCH] added options to flip/rotate and specify different input resolutions also fixed displayed image to max 800x800 everything above will be scaled while keeping aspect ratio

---
 generate_data.py |  119 +++++++++++++++++++++++++++++++++++++----------------------
 1 files changed, 74 insertions(+), 45 deletions(-)

diff --git a/generate_data.py b/generate_data.py
index 37a25c5..4131410 100644
--- a/generate_data.py
+++ b/generate_data.py
@@ -1,18 +1,24 @@
-from glob import glob
-import matplotlib.pyplot as plt
-import matplotlib.image as mpimage
-import pickle
-import math
-import random
-import os
-import re
 import cv2
 import fetch_data
-import sys
+from glob import glob
+import math
+import matplotlib.pyplot as plt
+import matplotlib.image as mpimage
 import numpy as np
+import os
+import pandas as pd
+import pickle
+import random
+import transform_data
 
-# Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection
+from config import Config
+
+
 class Backgrounds:
+    """
+    Container class for all background images for generator
+    Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection
+    """
     def __init__(self, images=None, dumps_dir='data/dtd/images'):
         if images is not None:
             self._images = images
@@ -38,8 +44,15 @@
 
 
 def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000):
+    """
+    Load Describable Texture Dataset (DTD) from local
+    :param dtd_dir: path of the DTD images folder
+    :param dump_it: flag for pickling it
+    :param dump_batch_size: # of images stored per pickle file
+    :return: list of all DTD images
+    """
     if not os.path.exists(dtd_dir):
-        print('Warning: directory for DTD 5s doesn\'t exist.' % dtd_dir)
+        print('Warning: directory for DTD %s doesn\'t exist.' % dtd_dir)
         print('You can download the dataset using this command:'
               '!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz')
         return []
@@ -62,46 +75,62 @@
 
 
 def apply_bounding_box(img, card_info, display=False):
-    # Mana symbol - They are located on the top right side of the card, next to the name.
-    # Their position is stationary, and is right-aligned.
-    has_mana_cost = isinstance(card_info['mana_cost'], str)  # Cards with no mana cost will have nan
-    is_planeswalker = 'Planeswalker' in card_info['type_line']
-    if has_mana_cost:
-        mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
-        x2 = 683
-        if is_planeswalker:
-            y1 = 50
-        else:
-            y1 = 67
-        for i in reversed(range(len(mana_cost))):
-            is_hybrid = '/' in mana_cost[i]
-            if is_hybrid:
-                box = [(x2 - 47, y1 - 8), (x2 + 2, y1 + 43)]  # (x1, y1), (x2, y2)
-                x2 -= 45
-            else:
-                box = [(x2 - 39, y1), (x2, y1 + 41)]  # (x1, y1), (x2, y2)
-                x2 -= 37
-
-            img_symbol = img[box[0][1]:box[1][1], box[0][0]:box[1][0]]
-            if display:
-                cv2.imshow('symbol', img_symbol)
-                cv2.waitKey(0)
+    """
+    Given a card image, extract specific features that can be used to train a model.
+    Note: Mana & set symbols are deprecated from the feature list. Refer to previous commits for their implementation:
+    https://github.com/hj3yoo/mtg_card_detector/tree/bb34d4e13da0f4753fbdefee837f54b16149d3ef
+    :param img: image of the card
+    :param card_info: characteristics of this card
+    :param display: flag for displaying the extracted features
+    :return:
+    """
+    # List of detected objects to be fed into the neural net
+    # The first object is the entire card
+    detected_object_list = [transform_data.ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)),
+                                                                    (0, len(img))])]
+    return detected_object_list
 
 
 def main():
+    random.seed()
     #bg_images = load_dtd()
     #bg = Backgrounds()
     #bg.get_random(display=True)
-    df = fetch_data.load_all_cards_text('data/all_cards.csv')
-    #repeat = 'y'
-    while True:
-        rand_card = df.iloc[random.randint(0, df.shape[0] - 1)]
-        card_img = cv2.imread('data/png/%s/%s_%s.png' % (rand_card['set'], rand_card['collector_number'],
-                                                         fetch_data.get_valid_filename(rand_card['name'])))
-        print(rand_card['name'])
-        sys.stdout.flush()
-        apply_bounding_box(card_img, rand_card, display=True)
-        #repeat = input('y to repeat, n to finish')
+
+    card_pool = pd.DataFrame()
+    for set_name in Config.all_set_list:
+        df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name))
+        #for _ in range(3):
+        #    card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
+        #    # Currently ignoring planeswalker cards due to their different card layout
+        #    is_planeswalker = 'Planeswalker' in card_info['type_line']
+        #    if not is_planeswalker:
+        #        card_pool = card_pool.append(card_info)
+        card_pool = card_pool.append(df)
+    '''
+    print(card_pool)
+    mana_symbol_set = set()
+    for _, card_info in card_pool.iterrows():
+        has_mana_cost = isinstance(card_info['mana_cost'], str)
+        if has_mana_cost:
+            mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
+            for symbol in mana_cost:
+                mana_symbol_set.add(symbol)
+
+    print(mana_symbol_set)
+    '''
+
+    for _, card_info in card_pool.iterrows():
+        img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], card_info['collector_number'],
+                                            fetch_data.get_valid_filename(card_info['name']))
+        print(img_name)
+        card_img = cv2.imread(img_name)
+        if card_img is None:
+            fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set'])
+            card_img = cv2.imread(img_name)
+        detected_object_list = apply_bounding_box(card_img, card_info, display=True)
+        print(detected_object_list)
+
     return
 
 

--
Gitblit v1.10.0