import cv2 import numpy as np import pandas as pd import imagehash as ih import os import sys import math import random from PIL import Image import fetch_data import transform_data card_width = 315 card_height = 440 def calc_image_hashes(card_pool, save_to=None): card_pool['art_hash'] = np.NaN for ind, card_info in card_pool.iterrows(): if ind % 100 == 0: print(ind) img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], card_info['collector_number'], fetch_data.get_valid_filename(card_info['name'])) card_img = cv2.imread(img_name) if card_img is None: fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set'])) card_img = cv2.imread(img_name) if card_img is None: print('WARNING: card %s is not found!' % img_name) img_art = Image.fromarray(card_img[121:580, 63:685]) art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) card_pool.at[ind, 'art_hash'] = art_hash img_card = Image.fromarray(card_img) card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4) card_pool.at[ind, 'card_hash'] = card_hash card_pool = card_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', 'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', 'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']] if save_to is not None: card_pool.to_pickle(save_to) return card_pool ''' df_list = [] for set_name in fetch_data.all_set_list: csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name) df = fetch_data.load_all_cards_text(csv_name) df_list.append(df) #print(df) card_pool = pd.concat(df_list) card_pool.reset_index(drop=True, inplace=True) card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck') ''' #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr') #card_pool = fetch_data.load_all_cards_text(csv_name) #card_pool = calc_image_hashes(card_pool) card_pool = pd.read_pickle('card_pool.pck') # Disclaimer: majority of the basic framework in this file is modified from the following tutorial: # https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/ # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ def order_points(pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype="float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def four_point_transform(image, pts): # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # If the image is horizontally long, rotate it by 90 if maxWidth > maxHeight: center = (maxHeight / 2, maxHeight / 2) M_rot = cv2.getRotationMatrix2D(center, 270, 1.0) warped = cv2.warpAffine(warped, M_rot, (maxHeight, maxWidth)) # return the warped image return warped # Get the names of the output layers def get_outputs_names(net): # Get the names of all the layers in the network layers_names = net.getLayerNames() # Get the names of the output layers, i.e. the layers with unconnected outputs return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Remove the bounding boxes with low confidence using non-maxima suppression def post_process(frame, outs, thresh_conf, thresh_nms): frame_height = frame.shape[0] frame_width = frame.shape[1] # Scan through all the bounding boxes output from the network and keep only the # ones with high confidence scores. Assign the box's class label as the class with the highest score. class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > thresh_conf: center_x = int(detection[0] * frame_width) center_y = int(detection[1] * frame_height) width = int(detection[2] * frame_width) height = int(detection[3] * frame_height) left = int(center_x - width / 2) top = int(center_y - height / 2) class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences. indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)] ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices] return ret # Draw the predicted bounding box def draw_pred(frame, class_id, classes, conf, left, top, right, bottom): # Draw a bounding box. cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) label = '%.2f' % conf # Get the label for the class name and its confidence if classes: assert (class_id < len(classes)) label = '%s:%s' % (classes[class_id], label) # Display the label at the top of the bounding box label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, label_size[1]) cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) def remove_glare(img): """ Inspired from: http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html The idea is to find area that has low saturation but high value, which is what a glare usually look like. """ img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) _, s, v = cv2.split(img_hsv) non_sat = (s < 32) * 255 # Find all pixels that are not very saturated # Slightly decrease the area of the non-satuared pixels by a erosion operation. disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) non_sat = cv2.erode(non_sat.astype(np.uint8), disk) # Set all brightness values, where the pixels are still saturated to 0. v[non_sat == 0] = 0 # filter out very bright pixels. glare = (v > 200) * 255 # Slightly increase the area for each pixel glare = cv2.dilate(glare.astype(np.uint8), disk) glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200 glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR) corrected = np.where(glare, glare_reduced, img) return corrected def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.3): # Typical pre-processing - grayscale, blurring, thresholding img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_blur = cv2.medianBlur(img_gray, 5) img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c) # Dilute the image, then erode them to remove minor noises kernel = np.ones(kernel_size, np.uint8) img_dilate = cv2.dilate(img_thresh, kernel, iterations=1) img_erode = cv2.erode(img_dilate, kernel, iterations=1) # Find the contour #img_contour = img_erode.copy() _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(cnts) == 0: print('no contours') return [] #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR) #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1) #cv2.imshow('test', img_contour) # For each contours detected, check if they are large enough and are rectangle cnts_rect = [] ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True) for i in range(len(cnts)): size = cv2.contourArea(cnts[ind_sort[i]]) peri = cv2.arcLength(cnts[ind_sort[i]], True) approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True) if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4: cnts_rect.append(approx) return cnts_rect def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None): img_copy = img.copy() # Create a 4D blob from a frame. blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(get_outputs_names(net)) # Remove the bounding boxes with low confidence obj_list = post_process(img, outs, thresh_conf, thresh_nms) for obj in obj_list: class_id, confidence, box = obj left, top, width, height = box draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height) # Put efficiency information. The function getPerfProfile returns the # overall time for inference(t) and the timings for each of the layers(in layersTimes) t, _ = net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) if out_path is not None: cv2.imwrite(out_path, img.astype(np.uint8)) if display: #no_glare = remove_glare(img_copy) #img_concat = np.concatenate((img, no_glare), axis=1) cv2.imshow('result', img) ''' for i in range(len(obj_list)): class_id, confidence, box = obj_list[i] left, top, width, height = box img_snip = img_copy[max(0, top):min(img.shape[0], top + height), max(0, left):min(img.shape[1], left + width)] img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip) img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1) cv2.imshow('feature#%d' % i, img_concat) ''' cv2.waitKey(0) cv2.destroyAllWindows() return obj_list def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None): if out_path is not None: vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30, (round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))) max_num_obj = 0 while True: ret, frame = capture.read() if not ret: # End of video print("End of video. Press any key to exit") cv2.waitKey(0) break img = frame.copy() obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim, display=False, out_path=None) #cnts_rect = find_card(img) max_num_obj = max(max_num_obj, len(obj_list)) if display: img_result = frame.copy() #img_result = cv2.drawContours(img_result, cnts_rect, -1, (0, 255, 0), 2) #for i in range(len(cnts_rect)): # pts = np.float32([p[0] for p in cnts_rect[i]]) # img_warp = four_point_transform(img, pts) # cv2.imshow('card#%d' % i, img_warp) #for i in range(len(cnts_rect), max_num_obj): # cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) #no_glare = remove_glare(img) #img_thresh, img_erode, img_contour = find_card(no_glare) #img_concat = np.concatenate((no_glare, img_contour), axis=1) for i in range(len(obj_list)): class_id, confidence, box = obj_list[i] left, top, width, height = box offset_ratio = 0.1 x1 = max(0, int(left - offset_ratio * width)) x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width)) y1 = max(0, int(top - offset_ratio * height)) y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height)) img_snip = img[y1:y2, x1:x2] cnts = find_card(img_snip) if len(cnts) > 0: cnt = cnts[-1] pts = np.float32([p[0] for p in cnt]) img_warp = four_point_transform(img_snip, pts) img_warp = cv2.resize(img_warp, (card_width, card_height)) ''' img_art = img_warp[47:249, 22:294] img_art = Image.fromarray(img_art.astype('uint8'), 'RGB') art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) card_pool['hash_diff'] = card_pool['art_hash'] - art_hash min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] guttersnipe = card_pool[card_pool['name'] == 'Cyclonic Rift'] diff = guttersnipe['art_hash'] - art_hash print(diff) card_name = min_cards.iloc[0]['name'] #print(min_cards.iloc[0]['name'], min_cards.iloc[0]['hash_diff']) ''' img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB') card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4) card_pool['hash_diff'] = card_pool['card_hash'] - card_hash min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] card_name = min_cards.iloc[0]['name'] hash_diff = min_cards.iloc[0]['hash_diff'] #guttersnipe = card_pool[card_pool['name'] == 'Cyclonic Rift'] #diff = guttersnipe['card_hash'] - card_hash #print(diff) #img_thresh, img_dilate, img_contour = find_card(img_snip) #img_concat = np.concatenate((img_snip, img_contour), axis=1) cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2) cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) cv2.imshow('card#%d' % i, img_warp) else: cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) for i in range(len(obj_list), max_num_obj): cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) cv2.imshow('result', img_result) #if len(obj_list) > 0: # cv2.waitKey(0) if out_path is not None: vid_writer.write(frame.astype(np.uint8)) cv2.waitKey(1) if out_path is not None: vid_writer.release() cv2.destroyAllWindows() def main(): # Specify paths for all necessary files test_path = os.path.abspath('test_file/test4.mp4') #weight_path = 'backup/tiny_yolo_10_39500.weights' #cfg_path = 'cfg/tiny_yolo_10.cfg' #class_path = "data/obj_10.names" weight_path = 'weights/second_general/tiny_yolo_final.weights' cfg_path = 'cfg/tiny_yolo.cfg' class_path = 'data/obj.names' out_dir = 'out' if not os.path.isfile(test_path): print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(weight_path): print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(cfg_path): print('The config file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(class_path): print('The class file %s doesn\'t exist!' % os.path.abspath(test_path)) return thresh_conf = 0.01 thresh_nms = 0.8 # Setup # Read class names from text file with open(class_path, 'r') as f: classes = [line.strip() for line in f.readlines()] # Load up the neural net using the config and weights net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) # Save the detection result if out_dir is provided if out_dir is None or out_dir == '': out_path = None else: out_path = out_dir + '/' + os.path.split(test_path)[1] # Check if test file is image or video test_ext = test_path[test_path.find('.') + 1:] if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: img = cv2.imread(test_path) detect_frame(net, classes, img, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms) else: capture = cv2.VideoCapture(0) detect_video(net, classes, capture, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms) capture.release() pass if __name__ == '__main__': main()