import cv2 import numpy as np import pandas as pd import imagehash as ih import os import ast import queue import sys import math import random import collections from operator import itemgetter import time from PIL import Image import fetch_data import transform_data card_width = 315 card_height = 440 def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4): new_pool = pd.DataFrame(columns=list(card_pool.columns.values)) new_pool['card_hash'] = np.NaN new_pool['art_hash'] = np.NaN for ind, card_info in card_pool.iterrows(): if ind % 100 == 0: print(ind) card_names = [] if card_info['layout'] in ['transform', 'double_faced_token']: if isinstance(card_info['card_faces'], str): # For some reason, dict isn't being parsed in the previous step card_faces = ast.literal_eval(card_info['card_faces']) else: card_faces = card_info['card_faces'] for i in range(len(card_faces)): card_names.append(card_faces[i]['name']) else: # if card_info['layout'] == 'normal': card_names.append(card_info['name']) for card_name in card_names: card_info['name'] = card_name img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], card_info['collector_number'], fetch_data.get_valid_filename(card_info['name'])) card_img = cv2.imread(img_name) if card_img is None: fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set'])) card_img = cv2.imread(img_name) if card_img is None: print('WARNING: card %s is not found!' % img_name) #img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) #card_pool.at[ind, 'art_hash'] = art_hash img_card = Image.fromarray(card_img) card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor) #card_pool.at[ind, 'card_hash'] = card_hash card_info['card_hash'] = card_hash #print(new_pool.index.max()) new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', 'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', 'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']] if save_to is not None: new_pool.to_pickle(save_to) return new_pool # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ def order_points(pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype="float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ def four_point_transform(image, pts): # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32") # compute the perspective transform matrix and then apply it mat = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, mat, (maxWidth, maxHeight)) # If the image is horizontally long, rotate it by 90 if maxWidth > maxHeight: center = (maxHeight / 2, maxHeight / 2) mat_rot = cv2.getRotationMatrix2D(center, 270, 1.0) warped = cv2.warpAffine(warped, mat_rot, (maxHeight, maxWidth)) # return the warped image return warped # Get the names of the output layers def get_outputs_names(net): # Get the names of all the layers in the network layers_names = net.getLayerNames() # Get the names of the output layers, i.e. the layers with unconnected outputs return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Remove the bounding boxes with low confidence using non-maxima suppression # https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/ def post_process(frame, outs, thresh_conf, thresh_nms): frame_height = frame.shape[0] frame_width = frame.shape[1] # Scan through all the bounding boxes output from the network and keep only the # ones with high confidence scores. Assign the box's class label as the class with the highest score. class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > thresh_conf: center_x = int(detection[0] * frame_width) center_y = int(detection[1] * frame_height) width = int(detection[2] * frame_width) height = int(detection[3] * frame_height) left = int(center_x - width / 2) top = int(center_y - height / 2) class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences. indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)] ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices] return ret # Draw the predicted bounding box def draw_pred(frame, class_id, classes, conf, left, top, right, bottom): # Draw a bounding box. cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) label = '%.2f' % conf # Get the label for the class name and its confidence if classes: assert (class_id < len(classes)) label = '%s:%s' % (classes[class_id], label) # Display the label at the top of the bounding box label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, label_size[1]) cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) def remove_glare(img): """ Inspired from: http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html The idea is to find area that has low saturation but high value, which is what a glare usually look like. """ img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) _, s, v = cv2.split(img_hsv) non_sat = (s < 32) * 255 # Find all pixels that are not very saturated # Slightly decrease the area of the non-satuared pixels by a erosion operation. disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) non_sat = cv2.erode(non_sat.astype(np.uint8), disk) # Set all brightness values, where the pixels are still saturated to 0. v[non_sat == 0] = 0 # filter out very bright pixels. glare = (v > 200) * 255 # Slightly increase the area for each pixel glare = cv2.dilate(glare.astype(np.uint8), disk) glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200 glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR) corrected = np.where(glare, glare_reduced, img) return corrected def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=5000): # Typical pre-processing - grayscale, blurring, thresholding img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_blur = cv2.medianBlur(img_gray, 5) img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c) # Dilute the image, then erode them to remove minor noises kernel = np.ones(kernel_size, np.uint8) img_dilate = cv2.dilate(img_thresh, kernel, iterations=1) img_erode = cv2.erode(img_dilate, kernel, iterations=1) # Find the contour #img_contour = img_erode.copy() _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(cnts) == 0: print('no contours') return [] cv2.drawContours(img, cnts, -1, (0, 0, 255), 1) ''' next = 0 while next != -1: img_copy = img.copy() print(hier[0][next]) cv2.drawContours(img_copy, cnts[hier[0][next][0]], -1, (0, 255, 0), 2) cv2.imshow('hi', img_copy) cv2.waitKey(0) next = hier[0][next][0] ''' #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR) #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1) #cv2.imshow('test', img_contour) ''' The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child, their previous and next node Using (preorder) depth-first search, find the uppermost contour in the hierarchy that satisfies the condition The candidate contour must be rectangle (has 4 points) and should be larger than a threshold ''' cnts_rect = [] stack = [(0, hier[0][0])] while len(stack) > 0: i_cnt, h = stack.pop() i_next, i_prev, i_child, i_parent = h if i_next != -1: stack.append((i_next, hier[0][i_next])) cnt = cnts[i_cnt] size = cv2.contourArea(cnt) peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.04 * peri, True) if size >= size_thresh: cv2.drawContours(img, [cnt], -1, (255, 0, 0), 1) #print(size) if len(approx) == 4: cnts_rect.append(approx) else: if i_child != -1: stack.append((i_child, hier[0][i_child])) ''' # For each contours detected, check if they are large enough and are rectangle ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True) for i in range(len(cnts)): peri = cv2.arcLength(cnts[ind_sort[i]], True) approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True) if len(approx) == 4: cnts_rect.append(approx) ''' return cnts_rect def draw_card_graph(exist_cards, card_pool, f_len): w_card = 63 h_card = 88 gap = 25 gap_sm = 10 w_bar = 300 h_bar = 12 txt_scale = 0.8 n_cards_p_col = 4 w_img = gap + (w_card + gap + w_bar + gap) * 2 #h_img = gap + (h_card + gap) * n_cards_p_col h_img = 480 img_graph = np.zeros((h_img, w_img, 3), dtype=np.uint8) x_anchor = gap y_anchor = gap i = 0 for key, val in sorted(exist_cards.items(), key=itemgetter(1), reverse=True)[:n_cards_p_col * 2]: card_name = key[:key.find('(') - 1] card_set = key[key.find('(') + 1:key.find(')')] confidence = sum(val) / f_len card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0] img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], card_info['collector_number'], fetch_data.get_valid_filename(card_info['name'])) card_img = cv2.imread(img_name) img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img cv2.putText(img_graph, '%s (%s)' % (card_name, card_set), (x_anchor + w_card + gap, y_anchor + gap_sm + int(txt_scale * 25)), cv2.FONT_HERSHEY_SIMPLEX, txt_scale, (255, 255, 255), 1) cv2.rectangle(img_graph, (x_anchor + w_card + gap, y_anchor + h_card - (gap_sm + h_bar)), (x_anchor + w_card + gap + int(w_bar * confidence), y_anchor + h_card - gap_sm), (0, 255, 0), thickness=cv2.FILLED) y_anchor += h_card + gap i += 1 if i % n_cards_p_col == 0: x_anchor += w_card + gap + w_bar + gap y_anchor = gap pass return img_graph def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), card_size=1000, out_path=None, display=True, debug=False): start_1 = time.time() elapsed = [] ''' # Create a 4D blob from a frame. blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(get_outputs_names(net)) elapsed.append((time.time() - start_1) * 1000) start_2 = time.time() img_result = img.copy() # Remove the bounding boxes with low confidence obj_list = post_process(img, outs, thresh_conf, thresh_nms) for obj in obj_list: class_id, confidence, box = obj left, top, width, height = box draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height) elapsed.append((time.time() - start_2) * 1000) ''' img_result = img.copy() # Put efficiency information. The function getPerfProfile returns the # overall time for inference(t) and the timings for each of the layers(in layersTimes) #if display: # t, _ = net.getPerfProfile() # label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) # cv2.putText(img_result, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) ''' Assuming that the model has properly identified all cards, there should be 1 card that can be classified per bounding box. Find the largest rectangular contour from the region of interest, and identify the card by comparing the perceptual hashing of the image with the other cards' image from the database. ''' det_cards = [] start_3 = time.time() cnts = find_card(img_result) for i in range(len(cnts)): cnt = cnts[i] # ignore any contours smaller than threshold elapsed.append((time.time() - start_3) * 1000) start_4 = time.time() pts = np.float32([p[0] for p in cnt]) img_warp = four_point_transform(img, pts) img_warp = cv2.resize(img_warp, (card_width, card_height)) elapsed.append((time.time() - start_4) * 1000) ''' img_art = img_warp[47:249, 22:294] img_art = Image.fromarray(img_art.astype('uint8'), 'RGB') art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) card_pool['hash_diff'] = card_pool['art_hash'] - art_hash min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] card_name = min_cards.iloc[0]['name'] ''' start_5 = time.time() img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB') card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten() card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash)) min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] card_name = min_cards.iloc[0]['name'] card_set = min_cards.iloc[0]['set'] det_cards.append((card_name, card_set)) hash_diff = min_cards.iloc[0]['hash_diff'] elapsed.append((time.time() - start_5) * 1000) # Display the result if debug: # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2) cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 1) cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) if debug: cv2.imshow('card#%d' % i, img_warp) #if debug: # cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) if out_path is not None: cv2.imwrite(out_path, img_result.astype(np.uint8)) elapsed = [(time.time() - start_1) * 1000] + elapsed #print(', '.join(['%.2f' % t for t in elapsed])) return det_cards, img_result def detect_video(net, classes, capture, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True, debug=False): if out_path is not None: img_graph = draw_card_graph({}, None, -1) # Black image of the graph just to get the dimension width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1] height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0]) vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height)) max_num_obj = 0 f_len = 10 # number of frames to consider to check for existing cards exist_cards = {} try: while True: ret, frame = capture.read() start_time = time.time() if not ret: # End of video print("End of video. Press any key to exit") cv2.waitKey(0) break # Use the YOLO model to identify each cards annonymously start_yolo = time.time() det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim, out_path=None, display=display, debug=debug) elapsed_yolo = (time.time() - start_yolo) * 1000 # If the card was already detected in the previous frame, append 1 to the list # If the card previously detected was not found in this trame, append 0 to the list # If the card wasn't previously detected, make a new list and add 1 to it # If the same card is detected multiple times in the same frame, keep track of the duplicates # The confidence will be calculated based on the number of frames the card was detected for det_cards_count = collections.Counter(det_cards).items() det_cards_list = [] for card, count in det_cards_count: card_name, card_set = card for i in range(count): 1 key = '%s (%s) #%d' % (card_name, card_set, i + 1) det_cards_list.append(key) gone = [] for key, val in exist_cards.items(): if key in det_cards_list: exist_cards[key] = exist_cards[key][1 - f_len:] + [1] else: exist_cards[key] = exist_cards[key][1 - f_len:] + [0] if len(val) == f_len and sum(val) == 0: gone.append(key) for key in det_cards_list: if key not in exist_cards.keys(): exist_cards[key] = [1] for key in gone: exist_cards.pop(key) start_graph = time.time() img_graph = draw_card_graph(exist_cards, card_pool, f_len) elapsed_graph = (time.time() - start_graph) * 1000 #if debug: # max_num_obj = max(max_num_obj, len(obj_list)) # for i in range(len(obj_list), max_num_obj): # cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) start_display = time.time() img_save = np.zeros((height, width, 3), dtype=np.uint8) img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph if display: cv2.imshow('result', img_save) elapsed_display = (time.time() - start_display) * 1000 elapsed_ms = (time.time() - start_time) * 1000 print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display)) if out_path is not None: vid_writer.write(img_save.astype(np.uint8)) cv2.waitKey(1) except KeyboardInterrupt: capture.release() if out_path is not None: vid_writer.release() cv2.destroyAllWindows() def main(): # Specify paths for all necessary files test_path = os.path.abspath('test_file/test4.mp4') #weight_path = 'backup/tiny_yolo_10_39500.weights' #cfg_path = 'cfg/tiny_yolo_10.cfg' #class_path = "data/obj_10.names" weight_path = 'weights/second_general/tiny_yolo_final.weights' cfg_path = 'cfg/tiny_yolo_old.cfg' class_path = 'data/obj.names' out_dir = 'out' if not os.path.isfile(test_path): print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(weight_path): print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(cfg_path): print('The config file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(class_path): print('The class file %s doesn\'t exist!' % os.path.abspath(test_path)) return ''' df_list = [] for set_name in fetch_data.all_set_list: csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name) df = fetch_data.load_all_cards_text(csv_name) df_list.append(df) #print(df) card_pool = pd.concat(df_list, sort=True) card_pool.reset_index(drop=True, inplace=True) card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') for hash_size in [8, 16, 32, 64]: for highfreq_factor in [4, 8, 16, 32]: pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor) if not os.path.exists(pck_name): print(pck_name) calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor) ''' #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr') #card_pool = fetch_data.load_all_cards_text(csv_name) #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck') #return card_pool = pd.read_pickle('card_pool_32_4.pck') #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')] card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']] # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it # significantly increases speed for subtracting hashes in the future. card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten()) thresh_conf = 0.01 thresh_nms = 0.8 # Setup # Read class names from text file with open(class_path, 'r') as f: classes = [line.strip() for line in f.readlines()] # Load up the neural net using the config and weights net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) # Save the detection result if out_dir is provided if out_dir is None or out_dir == '': out_path = None else: f_name = os.path.split(test_path)[1] out_path = out_dir + '/' + f_name[:f_name.find('.')] + '.avi' # Check if test file is image or video test_ext = test_path[test_path.find('.') + 1:] if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: img = cv2.imread(test_path) detect_frame(net, classes, img, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms) else: capture = cv2.VideoCapture(0) detect_video(net, classes, capture, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms, display=True, debug=False) capture.release() pass if __name__ == '__main__': main()