#include "convolutional_layer.h" #include image get_convolutional_image(convolutional_layer layer) { int h = (layer.h-1)/layer.stride + 1; int w = (layer.w-1)/layer.stride + 1; int c = layer.n; return double_to_image(h,w,c,layer.output); } image get_convolutional_delta(convolutional_layer layer) { int h = (layer.h-1)/layer.stride + 1; int w = (layer.w-1)/layer.stride + 1; int c = layer.n; return double_to_image(h,w,c,layer.delta); } convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activator) { printf("Convolutional Layer: %d x %d x %d image, %d filters\n", h,w,c,n); int i; convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); layer->h = h; layer->w = w; layer->c = c; layer->n = n; layer->stride = stride; layer->kernels = calloc(n, sizeof(image)); layer->kernel_updates = calloc(n, sizeof(image)); layer->biases = calloc(n, sizeof(double)); layer->bias_updates = calloc(n, sizeof(double)); for(i = 0; i < n; ++i){ layer->biases[i] = .005; layer->kernels[i] = make_random_kernel(size, c); layer->kernel_updates[i] = make_random_kernel(size, c); } layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * n, sizeof(double)); layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * n, sizeof(double)); layer->upsampled = make_image(h,w,n); if(activator == SIGMOID){ layer->activation = sigmoid_activation; layer->gradient = sigmoid_gradient; }else if(activator == RELU){ layer->activation = relu_activation; layer->gradient = relu_gradient; }else if(activator == IDENTITY){ layer->activation = identity_activation; layer->gradient = identity_gradient; } return layer; } void forward_convolutional_layer(const convolutional_layer layer, double *in) { image input = double_to_image(layer.h, layer.w, layer.c, in); image output = get_convolutional_image(layer); int i,j; for(i = 0; i < layer.n; ++i){ convolve(input, layer.kernels[i], layer.stride, i, output); } for(i = 0; i < output.c; ++i){ for(j = 0; j < output.h*output.w; ++j){ int index = i*output.h*output.w + j; output.data[index] += layer.biases[i]; output.data[index] = layer.activation(output.data[index]); } } } void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta) { int i; image in_image = double_to_image(layer.h, layer.w, layer.c, input); image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); image out_delta = get_convolutional_delta(layer); zero_image(in_delta); for(i = 0; i < layer.n; ++i){ back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta); } for(i = 0; i < layer.h*layer.w*layer.c; ++i){ in_delta.data[i] *= layer.gradient(in_image.data[i]); } } /* void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer) { int i,j; for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } zero_image(input); upsample_image(layer.output, layer.stride, layer.upsampled); for(j = 0; j < input.c; ++j){ for(i = 0; i < layer.n; ++i){ two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j); } } for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } } */ void learn_convolutional_layer(convolutional_layer layer, double *input) { int i; image in_image = double_to_image(layer.h, layer.w, layer.c, input); image out_delta = get_convolutional_delta(layer); for(i = 0; i < layer.n; ++i){ kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta); layer.bias_updates[i] += avg_image_layer(out_delta, i); } } void update_convolutional_layer(convolutional_layer layer, double step) { return; int i,j; for(i = 0; i < layer.n; ++i){ layer.biases[i] += step*layer.bias_updates[i]; layer.bias_updates[i] = 0; int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; for(j = 0; j < pixels; ++j){ layer.kernels[i].data[j] += step*layer.kernel_updates[i].data[j]; } zero_image(layer.kernel_updates[i]); } } void visualize_convolutional_layer(convolutional_layer layer) { int i; char buff[256]; //image vis = make_image(layer.n*layer.size, layer.size*layer.kernels[0].c, 3); for(i = 0; i < layer.n; ++i){ image k = layer.kernels[i]; sprintf(buff, "Kernel %d", i); if(k.c <= 3) show_image(k, buff); else show_image_layers(k, buff); } }