#include "convolutional_layer.h" #include "utils.h" #include "im2col.h" #include "col2im.h" #include "blas.h" #include "gemm.h" #include #include int convolutional_out_height(convolutional_layer layer) { int h = layer.h; if (!layer.pad) h -= layer.size; else h -= 1; return h/layer.stride + 1; } int convolutional_out_width(convolutional_layer layer) { int w = layer.w; if (!layer.pad) w -= layer.size; else w -= 1; return w/layer.stride + 1; } image get_convolutional_image(convolutional_layer layer) { int h,w,c; h = convolutional_out_height(layer); w = convolutional_out_width(layer); c = layer.n; return float_to_image(h,w,c,layer.output); } image get_convolutional_delta(convolutional_layer layer) { int h,w,c; h = convolutional_out_height(layer); w = convolutional_out_width(layer); c = layer.n; return float_to_image(h,w,c,layer.delta); } convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay) { int i; size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter... convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); layer->learning_rate = learning_rate; layer->momentum = momentum; layer->decay = decay; layer->h = h; layer->w = w; layer->c = c; layer->n = n; layer->batch = batch; layer->stride = stride; layer->size = size; layer->pad = pad; layer->filters = calloc(c*n*size*size, sizeof(float)); layer->filter_updates = calloc(c*n*size*size, sizeof(float)); layer->biases = calloc(n, sizeof(float)); layer->bias_updates = calloc(n, sizeof(float)); float scale = 1./sqrt(size*size*c); for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); for(i = 0; i < n; ++i){ layer->biases[i] = scale; } int out_h = convolutional_out_height(*layer); int out_w = convolutional_out_width(*layer); layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); #ifdef GPU layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size); layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size); layer->biases_gpu = cuda_make_array(layer->biases, n); layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n); layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c); layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n); layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n); #endif layer->activation = activation; fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); return layer; } void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c) { layer->h = h; layer->w = w; layer->c = c; int out_h = convolutional_out_height(*layer); int out_w = convolutional_out_width(*layer); layer->col_image = realloc(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); layer->output = realloc(layer->output, layer->batch*out_h * out_w * layer->n*sizeof(float)); layer->delta = realloc(layer->delta, layer->batch*out_h * out_w * layer->n*sizeof(float)); } void bias_output(const convolutional_layer layer) { int i,j,b; int out_h = convolutional_out_height(layer); int out_w = convolutional_out_width(layer); for(b = 0; b < layer.batch; ++b){ for(i = 0; i < layer.n; ++i){ for(j = 0; j < out_h*out_w; ++j){ layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i]; } } } } void forward_convolutional_layer(const convolutional_layer layer, float *in) { int out_h = convolutional_out_height(layer); int out_w = convolutional_out_width(layer); int i; bias_output(layer); int m = layer.n; int k = layer.size*layer.size*layer.c; int n = out_h*out_w; float *a = layer.filters; float *b = layer.col_image; float *c = layer.output; for(i = 0; i < layer.batch; ++i){ im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, b); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); c += n*m; in += layer.c*layer.h*layer.w; } activate_array(layer.output, m*n*layer.batch, layer.activation); } void learn_bias_convolutional_layer(convolutional_layer layer) { float alpha = 1./layer.batch; int i,b; int size = convolutional_out_height(layer) *convolutional_out_width(layer); for(b = 0; b < layer.batch; ++b){ for(i = 0; i < layer.n; ++i){ layer.bias_updates[i] += alpha * sum_array(layer.delta+size*(i+b*layer.n), size); } } } void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta) { float alpha = 1./layer.batch; int i; int m = layer.n; int n = layer.size*layer.size*layer.c; int k = convolutional_out_height(layer)* convolutional_out_width(layer); gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); learn_bias_convolutional_layer(layer); if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); for(i = 0; i < layer.batch; ++i){ float *a = layer.delta + i*m*k; float *b = layer.col_image; float *c = layer.filter_updates; float *im = in+i*layer.c*layer.h*layer.w; im2col_cpu(im, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, b); gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); if(delta){ a = layer.filters; b = layer.delta + i*m*k; c = layer.col_image; gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w); } } } void update_convolutional_layer(convolutional_layer layer) { int size = layer.size*layer.size*layer.c*layer.n; axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1); axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); scal_cpu(size, layer.momentum, layer.filter_updates, 1); } image get_convolutional_filter(convolutional_layer layer, int i) { int h = layer.size; int w = layer.size; int c = layer.c; return float_to_image(h,w,c,layer.filters+i*h*w*c); } image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) { image *filters = calloc(layer.n, sizeof(image)); int i,j,k,c; if(!prev_filters){ for(i = 0; i < layer.n; ++i){ filters[i] = copy_image(get_convolutional_filter(layer, i)); } } else{ image base = prev_filters[0]; for(i = 0; i < layer.n; ++i){ image filter = get_convolutional_filter(layer, i); filters[i] = make_image(base.h, base.w, base.c); for(j = 0; j < layer.size; ++j){ for(k = 0; k < layer.size; ++k){ for(c = 0; c < layer.c; ++c){ float weight = get_pixel(filter, j, k, c); image prev_filter = copy_image(prev_filters[c]); scale_image(prev_filter, weight); add_into_image(prev_filter, filters[i], 0,0); free_image(prev_filter); } } } } } return filters; } image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) { image *single_filters = weighted_sum_filters(layer, 0); show_images(single_filters, layer.n, window); image delta = get_convolutional_image(layer); image dc = collapse_image_layers(delta, 1); char buff[256]; sprintf(buff, "%s: Output", window); //show_image(dc, buff); //save_image(dc, buff); free_image(dc); return single_filters; }