#include #include #include #include #include #include "mini_blas.h" void pm(int M, int N, float *A) { int i,j; for(i =0 ; i < M; ++i){ for(j = 0; j < N; ++j){ printf("%10.6f, ", A[i*N+j]); } printf("\n"); } printf("\n"); } void gemm(int TA, int TB, int M, int N, int K, float ALPHA, float *A, int lda, float *B, int ldb, float BETA, float *C, int ldc) { cpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); } void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix) { int i; int mc = c; int mw = (size*size); int mh = ((h-size)/stride+1)*((w-size)/stride+1); int msize = mc*mw*mh; for(i = 0; i < msize; ++i){ int channel = i/(mh*mw); int block = (i%(mh*mw))/mw; int position = i%mw; int block_h = block/((w-size)/stride+1); int block_w = block%((w-size)/stride+1); int ph, pw, pc; ph = position/size+block_h; pw = position%size+block_w; pc = channel; matrix[i] = image[pc*h*w+ph*w+pw]; } } void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix) { int b,p; int blocks = ((h-size)/stride+1)*((w-size)/stride+1); int pixels = (size*size*c); for(b = 0; b < blocks; ++b){ int block_h = b/((w-size)/stride+1); int block_w = b%((w-size)/stride+1); for(p = 0; p < pixels; ++p){ int ph, pw, pc; int position = p%(size*size); pc = p/(size*size); ph = position/size+block_h; pw = position%size+block_w; matrix[b+p*blocks] = image[pc*h*w+ph*w+pw]; } } } //From Berkeley Vision's Caffe! void im2col_cpu(float* data_im, const int channels, const int height, const int width, const int ksize, const int stride, float* data_col) { int c,h,w; int height_col = (height - ksize) / stride + 1; int width_col = (width - ksize) / stride + 1; int channels_col = channels * ksize * ksize; for ( c = 0; c < channels_col; ++c) { int w_offset = c % ksize; int h_offset = (c / ksize) % ksize; int c_im = c / ksize / ksize; for ( h = 0; h < height_col; ++h) { for ( w = 0; w < width_col; ++w) { data_col[(c * height_col + h) * width_col + w] = data_im[(c_im * height + h * stride + h_offset) * width + w * stride + w_offset]; } } } } void col2im_cpu(float* data_col, const int channels, const int height, const int width, const int ksize, const int stride, float* data_im) { int c,h,w; int height_col = (height - ksize) / stride + 1; int width_col = (width - ksize) / stride + 1; int channels_col = channels * ksize * ksize; for ( c = 0; c < channels_col; ++c) { int w_offset = c % ksize; int h_offset = (c / ksize) % ksize; int c_im = c / ksize / ksize; for ( h = 0; h < height_col; ++h) { for ( w = 0; w < width_col; ++w) { data_im[(c_im * height + h * stride + h_offset) * width + w * stride + w_offset]+= data_col[(c * height_col + h) * width_col + w]; } } } } float *random_matrix(int rows, int cols) { int i; float *m = calloc(rows*cols, sizeof(float)); for(i = 0; i < rows*cols; ++i){ m[i] = (float)rand()/RAND_MAX; } return m; } void time_random_matrix(int TA, int TB, int m, int k, int n) { float *a; if(!TA) a = random_matrix(m,k); else a = random_matrix(k,m); int lda = (!TA)?k:m; float *b; if(!TB) b = random_matrix(k,n); else b = random_matrix(n,k); int ldb = (!TB)?n:k; float *c = random_matrix(m,n); int i; clock_t start = clock(), end; for(i = 0; i<1000; ++i){ cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); } end = clock(); printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); free(a); free(b); free(c); } void test_blas() { time_random_matrix(0,0,100,100,100); time_random_matrix(1,0,100,100,100); time_random_matrix(0,1,100,100,100); time_random_matrix(1,1,100,100,100); time_random_matrix(0,0,1000,100,100); time_random_matrix(1,0,1000,100,100); time_random_matrix(0,1,1000,100,100); time_random_matrix(1,1,1000,100,100); }