#include "detection_layer.h" #include "activations.h" #include "softmax_layer.h" #include "blas.h" #include "cuda.h" #include #include int get_detection_layer_locations(detection_layer layer) { return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background); } int get_detection_layer_output_size(detection_layer layer) { return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords); } detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance) { detection_layer *layer = calloc(1, sizeof(detection_layer)); layer->batch = batch; layer->inputs = inputs; layer->classes = classes; layer->coords = coords; layer->rescore = rescore; layer->nuisance = nuisance; layer->background = background; int outputs = get_detection_layer_output_size(*layer); layer->output = calloc(batch*outputs, sizeof(float)); layer->delta = calloc(batch*outputs, sizeof(float)); #ifdef GPU layer->output_gpu = cuda_make_array(0, batch*outputs); layer->delta_gpu = cuda_make_array(0, batch*outputs); #endif fprintf(stderr, "Detection Layer\n"); srand(0); return layer; } void dark_zone(detection_layer layer, int class, int start, network_state state) { int index = start+layer.background+class; int size = layer.classes+layer.coords+layer.background; int location = (index%(7*7*size)) / size ; int r = location / 7; int c = location % 7; int dr, dc; for(dr = -1; dr <= 1; ++dr){ for(dc = -1; dc <= 1; ++dc){ if(!(dr || dc)) continue; if((r + dr) > 6 || (r + dr) < 0) continue; if((c + dc) > 6 || (c + dc) < 0) continue; int di = (dr*7 + dc) * size; if(state.truth[index+di]) continue; layer.output[index + di] = 0; //if(!state.truth[start+di]) continue; //layer.output[start + di] = 1; } } } void forward_detection_layer(const detection_layer layer, network_state state) { int in_i = 0; int out_i = 0; int locations = get_detection_layer_locations(layer); int i,j; for(i = 0; i < layer.batch*locations; ++i){ int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]); float scale = 1; if(layer.rescore) scale = state.input[in_i++]; else if(layer.nuisance){ layer.output[out_i++] = 1-state.input[in_i++]; scale = mask; } else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++]; for(j = 0; j < layer.classes; ++j){ layer.output[out_i++] = scale*state.input[in_i++]; } if(layer.nuisance){ }else if(layer.background){ softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background); activate_array(state.input+in_i, layer.coords, LOGISTIC); } for(j = 0; j < layer.coords; ++j){ layer.output[out_i++] = mask*state.input[in_i++]; } } /* int count = 0; for(i = 0; i < layer.batch*locations; ++i){ for(j = 0; j < layer.classes+layer.background; ++j){ printf("%f, ", layer.output[count++]); } printf("\n"); for(j = 0; j < layer.coords; ++j){ printf("%f, ", layer.output[count++]); } printf("\n"); } */ /* if(layer.background || 1){ for(i = 0; i < layer.batch*locations; ++i){ int index = i*(layer.classes+layer.coords+layer.background); for(j= 0; j < layer.classes; ++j){ if(state.truth[index+j+layer.background]){ //dark_zone(layer, j, index, state); } } } } */ } void backward_detection_layer(const detection_layer layer, network_state state) { int locations = get_detection_layer_locations(layer); int i,j; int in_i = 0; int out_i = 0; for(i = 0; i < layer.batch*locations; ++i){ float scale = 1; float latent_delta = 0; if(layer.rescore) scale = state.input[in_i++]; else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++]; else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++]; for(j = 0; j < layer.classes; ++j){ latent_delta += state.input[in_i]*layer.delta[out_i]; state.delta[in_i++] = scale*layer.delta[out_i++]; } if (layer.nuisance) { }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); for(j = 0; j < layer.coords; ++j){ state.delta[in_i++] = layer.delta[out_i++]; } if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta; } } #ifdef GPU void forward_detection_layer_gpu(const detection_layer layer, network_state state) { int outputs = get_detection_layer_output_size(layer); float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(layer.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); } cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); network_state cpu_state; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_detection_layer(layer, cpu_state); cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); free(cpu_state.input); if(cpu_state.truth) free(cpu_state.truth); } void backward_detection_layer_gpu(detection_layer layer, network_state state) { int outputs = get_detection_layer_output_size(layer); float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(layer.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); } network_state cpu_state; cpu_state.train = state.train; cpu_state.input = in_cpu; cpu_state.truth = truth_cpu; cpu_state.delta = delta_cpu; cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs); backward_detection_layer(layer, cpu_state); cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs); free(in_cpu); free(delta_cpu); } #endif