#include "convolutional_layer.h" #include "utils.h" #include "im2col.h" #include "col2im.h" #include "blas.h" #include "gemm.h" #include #include int convolutional_out_height(convolutional_layer layer) { int h = layer.h; if (!layer.pad) h -= layer.size; else h -= 1; return h/layer.stride + 1; } int convolutional_out_width(convolutional_layer layer) { int w = layer.w; if (!layer.pad) w -= layer.size; else w -= 1; return w/layer.stride + 1; } image get_convolutional_image(convolutional_layer layer) { int h,w,c; h = convolutional_out_height(layer); w = convolutional_out_width(layer); c = layer.n; return float_to_image(w,h,c,layer.output); } image get_convolutional_delta(convolutional_layer layer) { int h,w,c; h = convolutional_out_height(layer); w = convolutional_out_width(layer); c = layer.n; return float_to_image(w,h,c,layer.delta); } convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) { int i; convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); layer->h = h; layer->w = w; layer->c = c; layer->n = n; layer->batch = batch; layer->stride = stride; layer->size = size; layer->pad = pad; layer->filters = calloc(c*n*size*size, sizeof(float)); layer->filter_updates = calloc(c*n*size*size, sizeof(float)); layer->biases = calloc(n, sizeof(float)); layer->bias_updates = calloc(n, sizeof(float)); float scale = 1./sqrt(size*size*c); for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); for(i = 0; i < n; ++i){ layer->biases[i] = scale; } int out_h = convolutional_out_height(*layer); int out_w = convolutional_out_width(*layer); layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); #ifdef GPU layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size); layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size); layer->biases_gpu = cuda_make_array(layer->biases, n); layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n); layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c); layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n); layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n); #endif layer->activation = activation; fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); return layer; } void resize_convolutional_layer(convolutional_layer *layer, int h, int w) { layer->h = h; layer->w = w; int out_h = convolutional_out_height(*layer); int out_w = convolutional_out_width(*layer); layer->col_image = realloc(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); layer->output = realloc(layer->output, layer->batch*out_h * out_w * layer->n*sizeof(float)); layer->delta = realloc(layer->delta, layer->batch*out_h * out_w * layer->n*sizeof(float)); #ifdef GPU cuda_free(layer->col_image_gpu); cuda_free(layer->delta_gpu); cuda_free(layer->output_gpu); layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c); layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n); layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n); #endif } void bias_output(float *output, float *biases, int batch, int n, int size) { int i,j,b; for(b = 0; b < batch; ++b){ for(i = 0; i < n; ++i){ for(j = 0; j < size; ++j){ output[(b*n + i)*size + j] = biases[i]; } } } } void backward_bias(float *bias_updates, float *delta, int batch, int n, int size) { int i,b; for(b = 0; b < batch; ++b){ for(i = 0; i < n; ++i){ bias_updates[i] += sum_array(delta+size*(i+b*n), size); } } } void forward_convolutional_layer(const convolutional_layer layer, network_state state) { int out_h = convolutional_out_height(layer); int out_w = convolutional_out_width(layer); int i; bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w); int m = layer.n; int k = layer.size*layer.size*layer.c; int n = out_h*out_w; float *a = layer.filters; float *b = layer.col_image; float *c = layer.output; for(i = 0; i < layer.batch; ++i){ im2col_cpu(state.input, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, b); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); c += n*m; state.input += layer.c*layer.h*layer.w; } activate_array(layer.output, m*n*layer.batch, layer.activation); } void backward_convolutional_layer(convolutional_layer layer, network_state state) { int i; int m = layer.n; int n = layer.size*layer.size*layer.c; int k = convolutional_out_height(layer)* convolutional_out_width(layer); gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k); if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); for(i = 0; i < layer.batch; ++i){ float *a = layer.delta + i*m*k; float *b = layer.col_image; float *c = layer.filter_updates; float *im = state.input+i*layer.c*layer.h*layer.w; im2col_cpu(im, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, b); gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); if(state.delta){ a = layer.filters; b = layer.delta + i*m*k; c = layer.col_image; gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w); } } } void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) { int size = layer.size*layer.size*layer.c*layer.n; axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1); scal_cpu(layer.n, momentum, layer.bias_updates, 1); axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1); axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1); scal_cpu(size, momentum, layer.filter_updates, 1); } image get_convolutional_filter(convolutional_layer layer, int i) { int h = layer.size; int w = layer.size; int c = layer.c; return float_to_image(w,h,c,layer.filters+i*h*w*c); } image *get_filters(convolutional_layer layer) { image *filters = calloc(layer.n, sizeof(image)); int i; for(i = 0; i < layer.n; ++i){ filters[i] = copy_image(get_convolutional_filter(layer, i)); } return filters; } image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) { image *single_filters = get_filters(layer); show_images(single_filters, layer.n, window); image delta = get_convolutional_image(layer); image dc = collapse_image_layers(delta, 1); char buff[256]; sprintf(buff, "%s: Output", window); //show_image(dc, buff); //save_image(dc, buff); free_image(dc); return single_filters; }