#include "network.h" #include "utils.h" #include "parser.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #endif void train_writing(char *cfgfile, char *weightfile) { char *backup_directory = "/home/pjreddie/backup/"; data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; int i = *net.seen/imgs; list *plist = get_paths("figures.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; while(1){ ++i; time=clock(); data train = load_data_writing(paths, imgs, plist->size, 256, 256, 1); printf("Loaded %lf seconds\n",sec(clock()-time)); time=clock(); float loss = train_network(net, train); /* image pred = float_to_image(64, 64, 1, out); print_image(pred); */ /* image im = float_to_image(256, 256, 3, train.X.vals[0]); image lab = float_to_image(64, 64, 1, train.y.vals[0]); image pred = float_to_image(64, 64, 1, out); show_image(im, "image"); show_image(lab, "label"); print_image(lab); show_image(pred, "pred"); cvWaitKey(0); */ if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen); free_data(train); //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } } } void test_writing(char *cfgfile, char *weightfile, char *outfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char filename[256]; fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, 0, 0); //image im = load_image_color("/home/pjreddie/darknet/data/figs/C02-1001-Figure-1.png", 0, 0); image sized = resize_image(im, net.w, net.h); printf("%d %d %d\n", im.h, im.w, im.c); float *X = sized.data; time=clock(); network_predict(net, X); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); image pred = get_network_image(net); if (outfile) { printf("Save image as %s.png (shape: %d %d)\n", outfile, pred.w, pred.h); save_image(pred, outfile); } else { show_image(pred, "prediction"); #ifdef OPENCV cvWaitKey(0); cvDestroyAllWindows(); #endif } free_image(im); free_image(sized); } void run_writing(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *outfile = (argc > 5) ? argv[5] : 0; if(0==strcmp(argv[2], "train")) train_writing(cfg, weights); else if(0==strcmp(argv[2], "test")) test_writing(cfg, weights, outfile); }