import cv2 import numpy as np import os import sys import math from operator import itemgetter # Disclaimer: majority of the basic framework in this file is modified from the following tutorial: # https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/ # Get the names of the output layers def get_outputs_names(net): # Get the names of all the layers in the network layers_names = net.getLayerNames() # Get the names of the output layers, i.e. the layers with unconnected outputs return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Remove the bounding boxes with low confidence using non-maxima suppression def post_process(frame, outs, thresh_conf, thresh_nms): frame_height = frame.shape[0] frame_width = frame.shape[1] # Scan through all the bounding boxes output from the network and keep only the # ones with high confidence scores. Assign the box's class label as the class with the highest score. class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > thresh_conf: center_x = int(detection[0] * frame_width) center_y = int(detection[1] * frame_height) width = int(detection[2] * frame_width) height = int(detection[3] * frame_height) left = int(center_x - width / 2) top = int(center_y - height / 2) class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences. indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)] ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices] return ret # Draw the predicted bounding box def draw_pred(frame, class_id, classes, conf, left, top, right, bottom): # Draw a bounding box. cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) label = '%.2f' % conf # Get the label for the class name and its confidence if classes: assert (class_id < len(classes)) label = '%s:%s' % (classes[class_id], label) # Display the label at the top of the bounding box label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, label_size[1]) cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) def remove_glare(img): """ Inspired from: http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html The idea is to find area that has low saturation but high value, which is what a glare usually look like. """ img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) _, s, v = cv2.split(img_hsv) non_sat = (s < 32) * 255 # Find all pixels that are not very saturated # Slightly decrease the area of the non-satuared pixels by a erosion operation. disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) non_sat = cv2.erode(non_sat.astype(np.uint8), disk) # Set all brightness values, where the pixels are still saturated to 0. v[non_sat == 0] = 0 # filter out very bright pixels. glare = (v > 240) * 255 # Slightly increase the area for each pixel glare = cv2.dilate(glare.astype(np.uint8), disk) glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200 glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR) corrected = np.where(glare, glare_reduced, img) return corrected def find_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200, min_line_length=None, max_line_gap=None, debug=False): # Default values if blur_radius is None: blur_radius = math.floor(min(img.shape[:2]) / 100 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd if dilate_radius is None: dilate_radius = math.floor(min(img.shape[:2]) / 67 + 0.5) if min_line_length is None: min_line_length = min(img.shape[:2]) / 3 if max_line_gap is None: max_line_gap = min(img.shape[:2]) / 10 thresh_radius = math.floor(min(img.shape[:2]) / 50 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd print(blur_radius, dilate_radius, thresh_radius, min_line_length, max_line_gap) ''' blur_radius = 3 dilate_radius = 3 thresh_radius = 3 min_line_length = 5 max_line_gap = 5 ''' img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Median blur better removes background textures than Gaussian blur img_blur = cv2.medianBlur(img_gray, blur_radius) # Truncate the bright area while detecting the border img_thresh = cv2.adaptiveThreshold(img_blur, 128, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, thresh_radius, 5) # _, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC) # Dilate the image to emphasize thick borders around the card kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8) img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1) img_dilate = cv2.erode(img_dilate, kernel_dilate, iterations=1) img_contour = img_dilate.copy() _, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR) img_contour = cv2.drawContours(img_contour, contours, -1, (128, 0, 0), 1) # find the biggest area c = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(c) # draw the book contour (in green) img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1) # Canny edge - low minimum hysteresis to detect glowed area, # and high maximum hysteresis to compensate for high false positives. img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst) detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=300, minLineLength=min_line_length, maxLineGap=max_line_gap) card_found = detected_lines is not None if card_found: print(len(detected_lines)) img_hough = cv2.cvtColor(img_canny.copy(), cv2.COLOR_GRAY2BGR) if card_found: for line in detected_lines: x1, y1, x2, y2 = line[0] cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1) img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR) img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR) #img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR) return img_thresh, img_dilate, img_contour, img_hough def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None): img_copy = img.copy() # Create a 4D blob from a frame. blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(get_outputs_names(net)) # Remove the bounding boxes with low confidence obj_list = post_process(img, outs, thresh_conf, thresh_nms) for obj in obj_list: class_id, confidence, box = obj left, top, width, height = box draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height) # Put efficiency information. The function getPerfProfile returns the # overall time for inference(t) and the timings for each of the layers(in layersTimes) t, _ = net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) if out_path is not None: cv2.imwrite(out_path, img.astype(np.uint8)) if display: no_glare = remove_glare(img_copy) img_concat = np.concatenate((img, no_glare), axis=1) cv2.imshow('result', img_concat) for i in range(len(obj_list)): class_id, confidence, box = obj_list[i] left, top, width, height = box img_snip = img_copy[max(0, top):min(img.shape[0], top + height), max(0, left):min(img.shape[1], left + width)] img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip) img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1) cv2.imshow('feature#%d' % i, img_concat) cv2.waitKey(0) cv2.destroyAllWindows() return obj_list def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None): if out_path is not None: vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30, (round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))) max_num_obj = 0 while True: ret, frame = capture.read() if not ret: # End of video print("End of video. Press any key to exit") cv2.waitKey(0) break img = frame.copy() obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim, display=False, out_path=None) max_num_obj = max(max_num_obj, len(obj_list)) if display: no_glare = remove_glare(img) img_concat = np.concatenate((frame, no_glare), axis=1) cv2.imshow('result', img_concat) for i in range(len(obj_list)): class_id, confidence, box = obj_list[i] left, top, width, height = box img_snip = img[max(0, top):min(img.shape[0], top + height), max(0, left):min(img.shape[1], left + width)] img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip) img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1) cv2.imshow('feature#%d' % i, img_concat) for i in range(len(obj_list), max_num_obj): cv2.imshow('feature#%d' % i, np.zeros((1, 1), dtype=np.uint8)) if len(obj_list) > 0: cv2.waitKey(0) if out_path is not None: vid_writer.write(frame.astype(np.uint8)) cv2.waitKey(1) if out_path is not None: vid_writer.release() cv2.destroyAllWindows() def main(): # Specify paths for all necessary files test_path = os.path.abspath('../data/test1.jpg') weight_path = 'weights/second_general/tiny_yolo_final.weights' cfg_path = 'cfg/tiny_yolo.cfg' class_path = "data/obj.names" out_dir = 'out' if not os.path.isfile(test_path): print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(weight_path): print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(cfg_path): print('The config file %s doesn\'t exist!' % os.path.abspath(test_path)) return if not os.path.isfile(class_path): print('The class file %s doesn\'t exist!' % os.path.abspath(test_path)) return # Setup # Read class names from text file with open(class_path, 'r') as f: classes = [line.strip() for line in f.readlines()] # Load up the neural net using the config and weights net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) # Save the detection result if out_dir is provided if out_dir is None or out_dir == '': out_path = None else: out_path = out_dir + '/' + os.path.split(test_path)[1] # Check if test file is image or video test_ext = test_path[test_path.find('.') + 1:] if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: img = cv2.imread(test_path) detect_frame(net, classes, img, out_path=out_path) else: capture = cv2.VideoCapture(test_path) detect_video(net, classes, capture, out_path=out_path) capture.release() pass if __name__ == '__main__': main()