from glob import glob import matplotlib.pyplot as plt import matplotlib.image as mpimage import pickle import math import random import os import re import cv2 import fetch_data import sys import numpy as np import pandas as pd import transform_data # Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection class Backgrounds: def __init__(self, images=None, dumps_dir='data/dtd/images'): if images is not None: self._images = images else: # load from pickle if not os.path.exists(dumps_dir): print('Warning: directory for dump %s doesn\'t exist' % dumps_dir) return self._images = [] for dump_name in glob(dumps_dir + '/*.pck'): with open(dump_name, 'rb') as dump: print('Loading ' + dump_name) images = pickle.load(dump) self._images += images if len(self._images) == 0: self._images = load_dtd() print('# of images loaded: %d' % len(self._images)) def get_random(self, display=False): bg = self._images[random.randint(0, len(self._images) - 1)] if display: plt.show(bg) return bg def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000): if not os.path.exists(dtd_dir): print('Warning: directory for DTD 5s doesn\'t exist.' % dtd_dir) print('You can download the dataset using this command:' '!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz') return [] bg_images = [] # Search the directory for all images, and append them for subdir in glob(dtd_dir + "/*"): for f in glob(subdir + "/*.jpg"): bg_images.append(mpimage.imread(f)) print("# of images loaded :", len(bg_images)) # Save them as a pickle if necessary if dump_it: for i in range(math.ceil(len(bg_images) / dump_batch_size)): dump_name = '%s/dtd_dump_%d.pck' % (dtd_dir, i) with open(dump_name, 'wb') as dump: print('Dumping ' + dump_name) pickle.dump(bg_images[i * dump_batch_size:(i + 1) * dump_batch_size], dump) return bg_images def apply_bounding_box(img, card_info, display=False): # List of detected objects to be fed into the neural net # The first object is the entire card detected_object_list = [transform_data.ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)), (0, len(img))])] ''' # Mana symbol - They are located on the top right side of the card, next to the name # Their position is stationary, and is right-aligned. has_mana_cost = isinstance(card_info['mana_cost'], str) # Cards with no mana cost will have nan if has_mana_cost: mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost']) x_anchor = 683 y_anchor = 65 # Cards with specific type or from old sets have their symbol at a different position if card_info['set'] in ['8ed', 'mrd', 'dst', '5dn']: y_anchor -= 2 for i in reversed(range(len(mana_cost))): # Hybrid mana symbol are larger than a normal symbol is_hybrid = '/' in mana_cost[i] if is_hybrid: x1 = x_anchor - 47 x2 = x_anchor + 2 y1 = y_anchor - 8 y2 = y_anchor + 43 x_anchor -= 45 else: x1 = x_anchor - 39 x2 = x_anchor y1 = y_anchor y2 = y_anchor + 43 x_anchor -= 37 # Append them to the list of bounding box with the appropriate label symbol_name = 'mana_symbol:' + mana_cost[i] key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)] detected_object_list.append(transform_data.ExtractedObject(symbol_name, key_pts)) if display: img_symbol = img[y1:y2, x1:x2] cv2.imshow('symbol', img_symbol) cv2.waitKey(0) # Set symbol - located on the right side of the type box in the centre of the card, next to the card type # Only one symbol exists, and its colour varies by rarity. if card_info['set'] in ['8ed']: x1 = 622 x2 = 670 elif card_info['set'] in ['mrd', 'm10', 'm11', 'm12', 'm13', 'm14']: x1 = 602 x2 = 684 elif card_info['set'] in ['dst']: x1 = 636 x2 = 673 elif card_info['set'] in ['5dn']: x1 = 630 x2 = 675 elif card_info['set'] in ['bok', 'rtr']: x1 = 633 x2 = 683 elif card_info['set'] in ['sok', 'mbs']: x1 = 638 x2 = 683 elif card_info['set'] in ['rav']: x1 = 640 x2 = 678 elif card_info['set'] in ['csp']: x1 = 650 x2 = 683 elif card_info['set'] in ['tsp', 'lrw', 'zen', 'wwk', 'ths']: x1 = 640 x2 = 683 elif card_info['set'] in ['plc', 'fut', 'shm', 'eve']: x1 = 625 x2 = 685 elif card_info['set'] in ['10e']: x1 = 623 x2 = 680 elif card_info['set'] in ['mor', 'roe', 'bng']: x1 = 637 x2 = 687 elif card_info['set'] in ['ala', 'arb']: x1 = 635 x2 = 680 elif card_info['set'] in ['nph']: x1 = 642 x2 = 678 elif card_info['set'] in ['gtc']: x1 = 610 x2 = 683 elif card_info['set'] in ['dgm']: x1 = 618 x2 = 678 else: x1 = 630 x2 = 683 y1 = 589 y2 = 636 # Append them to the list of bounding box with the appropriate label symbol_name = 'set_symbol:' + card_info['set'] key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)] detected_object_list.append(transform_data.ExtractedObject(symbol_name, key_pts)) if display: img_symbol = img[y1:y2, x1:x2] cv2.imshow('symbol', img_symbol) cv2.waitKey(0) # Name box - The long bar on the top with card name and mana symbols # TODO # Type box - The long bar on the middle with card type and set symbols # TODO # Image box - the large image on the top half of the card # TODO ''' return detected_object_list def main(): random.seed() #bg_images = load_dtd() #bg = Backgrounds() #bg.get_random(display=True) card_pool = pd.DataFrame() for set_name in fetch_data.all_set_list: df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name) #for _ in range(3): # card_info = df.iloc[random.randint(0, df.shape[0] - 1)] # # Currently ignoring planeswalker cards due to their different card layout # is_planeswalker = 'Planeswalker' in card_info['type_line'] # if not is_planeswalker: # card_pool = card_pool.append(card_info) card_pool = card_pool.append(df) ''' print(card_pool) mana_symbol_set = set() for _, card_info in card_pool.iterrows(): has_mana_cost = isinstance(card_info['mana_cost'], str) if has_mana_cost: mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost']) for symbol in mana_cost: mana_symbol_set.add(symbol) print(mana_symbol_set) ''' for _, card_info in card_pool.iterrows(): img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'], fetch_data.get_valid_filename(card_info['name'])) print(img_name) card_img = cv2.imread(img_name) if card_img is None: fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set']) card_img = cv2.imread(img_name) detected_object_list = apply_bounding_box(card_img, card_info, display=True) print(detected_object_list) return if __name__ == '__main__': main()