#include "convolutional_layer.h" #include "utils.h" #include image get_convolutional_image(convolutional_layer layer) { int h,w,c; if(layer.edge){ h = (layer.h-1)/layer.stride + 1; w = (layer.w-1)/layer.stride + 1; }else{ h = (layer.h - layer.size)/layer.stride+1; w = (layer.h - layer.size)/layer.stride+1; } c = layer.n; return double_to_image(h,w,c,layer.output); } image get_convolutional_delta(convolutional_layer layer) { int h,w,c; if(layer.edge){ h = (layer.h-1)/layer.stride + 1; w = (layer.w-1)/layer.stride + 1; }else{ h = (layer.h - layer.size)/layer.stride+1; w = (layer.h - layer.size)/layer.stride+1; } c = layer.n; return double_to_image(h,w,c,layer.delta); } convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation) { int i; int out_h,out_w; convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); layer->h = h; layer->w = w; layer->c = c; layer->n = n; layer->edge = 0; layer->stride = stride; layer->kernels = calloc(n, sizeof(image)); layer->kernel_updates = calloc(n, sizeof(image)); layer->kernel_momentum = calloc(n, sizeof(image)); layer->biases = calloc(n, sizeof(double)); layer->bias_updates = calloc(n, sizeof(double)); layer->bias_momentum = calloc(n, sizeof(double)); double scale = 2./(size*size); for(i = 0; i < n; ++i){ //layer->biases[i] = rand_normal()*scale + scale; layer->biases[i] = 0; layer->kernels[i] = make_random_kernel(size, c, scale); layer->kernel_updates[i] = make_random_kernel(size, c, 0); layer->kernel_momentum[i] = make_random_kernel(size, c, 0); } layer->size = 2*(size/2)+1; if(layer->edge){ out_h = (layer->h-1)/layer->stride + 1; out_w = (layer->w-1)/layer->stride + 1; }else{ out_h = (layer->h - layer->size)/layer->stride+1; out_w = (layer->h - layer->size)/layer->stride+1; } fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); layer->output = calloc(out_h * out_w * n, sizeof(double)); layer->delta = calloc(out_h * out_w * n, sizeof(double)); layer->upsampled = make_image(h,w,n); layer->activation = activation; return layer; } void forward_convolutional_layer(const convolutional_layer layer, double *in) { image input = double_to_image(layer.h, layer.w, layer.c, in); image output = get_convolutional_image(layer); int i,j; for(i = 0; i < layer.n; ++i){ convolve(input, layer.kernels[i], layer.stride, i, output, layer.edge); } for(i = 0; i < output.c; ++i){ for(j = 0; j < output.h*output.w; ++j){ int index = i*output.h*output.w + j; output.data[index] += layer.biases[i]; output.data[index] = activate(output.data[index], layer.activation); } } } void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta) { int i; image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); image out_delta = get_convolutional_delta(layer); zero_image(in_delta); for(i = 0; i < layer.n; ++i){ back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta, layer.edge); } } void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta) { image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); image out_delta = get_convolutional_delta(layer); int i,j; for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } zero_image(in_delta); upsample_image(out_delta, layer.stride, layer.upsampled); for(j = 0; j < in_delta.c; ++j){ for(i = 0; i < layer.n; ++i){ two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge); } } for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } } void gradient_delta_convolutional_layer(convolutional_layer layer) { int i; image out_delta = get_convolutional_delta(layer); image out_image = get_convolutional_image(layer); for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){ out_delta.data[i] *= gradient(out_image.data[i], layer.activation); } } void learn_convolutional_layer(convolutional_layer layer, double *input) { int i; image in_image = double_to_image(layer.h, layer.w, layer.c, input); image out_delta = get_convolutional_delta(layer); gradient_delta_convolutional_layer(layer); for(i = 0; i < layer.n; ++i){ kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); layer.bias_updates[i] += avg_image_layer(out_delta, i); } } void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) { int i,j; for(i = 0; i < layer.n; ++i){ layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; layer.biases[i] += layer.bias_momentum[i]; layer.bias_updates[i] = 0; int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; for(j = 0; j < pixels; ++j){ layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) + momentum*layer.kernel_momentum[i].data[j]; layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j]; } zero_image(layer.kernel_updates[i]); } } void visualize_convolutional_filters(convolutional_layer layer, char *window) { int color = 1; int border = 1; int h,w,c; int size = layer.size; h = size; w = (size + border) * layer.n - border; c = layer.kernels[0].c; if(c != 3 || !color){ h = (h+border)*c - border; c = 1; } image filters = make_image(h,w,c); int i,j; for(i = 0; i < layer.n; ++i){ int w_offset = i*(size+border); image k = layer.kernels[i]; image copy = copy_image(k); normalize_image(copy); for(j = 0; j < k.c; ++j){ set_pixel(copy,0,0,j,layer.biases[i]); } if(c == 3 && color){ embed_image(copy, filters, 0, w_offset); } else{ for(j = 0; j < k.c; ++j){ int h_offset = j*(size+border); image layer = get_image_layer(k, j); embed_image(layer, filters, h_offset, w_offset); free_image(layer); } } free_image(copy); } image delta = get_convolutional_delta(layer); image dc = collapse_image_layers(delta, 1); char buff[256]; sprintf(buff, "%s: Delta", window); show_image(dc, buff); free_image(dc); show_image(filters, window); free_image(filters); } void visualize_convolutional_layer(convolutional_layer layer) { int i; char buff[256]; for(i = 0; i < layer.n; ++i){ image k = layer.kernels[i]; sprintf(buff, "Kernel %d", i); if(k.c <= 3) show_image(k, buff); else show_image_layers(k, buff); } }