#include "network.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #endif typedef struct { float *x; float *y; } float_pair; float_pair get_rnn_data(char *text, int len, int batch, int steps) { float *x = calloc(batch * steps * 256, sizeof(float)); float *y = calloc(batch * steps * 256, sizeof(float)); int i,j; for(i = 0; i < batch; ++i){ int index = rand() %(len - steps - 1); for(j = 0; j < steps; ++j){ x[(j*batch + i)*256 + text[index + j]] = 1; y[(j*batch + i)*256 + text[index + j + 1]] = 1; } } float_pair p; p.x = x; p.y = y; return p; } void train_char_rnn(char *cfgfile, char *weightfile, char *filename) { FILE *fp = fopen(filename, "r"); //FILE *fp = fopen("data/ab.txt", "r"); //FILE *fp = fopen("data/grrm/asoiaf.txt", "r"); fseek(fp, 0, SEEK_END); size_t size = ftell(fp); fseek(fp, 0, SEEK_SET); char *text = calloc(size, sizeof(char)); fread(text, 1, size, fp); fclose(fp); char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); data_seed = time(0); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int batch = net.batch; int steps = net.time_steps; int i = (*net.seen)/net.batch; clock_t time; while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); float_pair p = get_rnn_data(text, size, batch/steps, steps); float loss = train_network_datum(net, p.x, p.y) / (batch); free(p.x); free(p.y); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%10==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); } void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed) { srand(rseed); char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int i, j; for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; char c; int len = strlen(seed); float *input = calloc(256, sizeof(float)); for(i = 0; i < len-1; ++i){ c = seed[i]; input[(int)c] = 1; network_predict(net, input); input[(int)c] = 0; printf("%c", c); } c = seed[len-1]; for(i = 0; i < num; ++i){ printf("%c", c); float r = rand_uniform(0,1); float sum = 0; input[(int)c] = 1; float *out = network_predict(net, input); input[(int)c] = 0; for(j = 0; j < 256; ++j){ sum += out[j]; if(sum > r) break; } c = j; } printf("\n"); } void run_char_rnn(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt"); char *seed = find_char_arg(argc, argv, "-seed", "\n"); int len = find_int_arg(argc, argv, "-len", 100); float temp = find_float_arg(argc, argv, "-temp", 1); int rseed = find_int_arg(argc, argv, "-srand", time(0)); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename); else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed); }