#include "detection_layer.h" #include "activations.h" #include "softmax_layer.h" #include "blas.h" #include "cuda.h" #include "utils.h" #include #include #include int get_detection_layer_locations(detection_layer layer) { return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background); } int get_detection_layer_output_size(detection_layer layer) { return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords); } detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance) { detection_layer *layer = calloc(1, sizeof(detection_layer)); layer->batch = batch; layer->inputs = inputs; layer->classes = classes; layer->coords = coords; layer->rescore = rescore; layer->nuisance = nuisance; layer->cost = calloc(1, sizeof(float)); layer->does_cost=1; layer->background = background; int outputs = get_detection_layer_output_size(*layer); layer->output = calloc(batch*outputs, sizeof(float)); layer->delta = calloc(batch*outputs, sizeof(float)); #ifdef GPU layer->output_gpu = cuda_make_array(0, batch*outputs); layer->delta_gpu = cuda_make_array(0, batch*outputs); #endif fprintf(stderr, "Detection Layer\n"); srand(0); return layer; } void dark_zone(detection_layer layer, int class, int start, network_state state) { int index = start+layer.background+class; int size = layer.classes+layer.coords+layer.background; int location = (index%(7*7*size)) / size ; int r = location / 7; int c = location % 7; int dr, dc; for(dr = -1; dr <= 1; ++dr){ for(dc = -1; dc <= 1; ++dc){ if(!(dr || dc)) continue; if((r + dr) > 6 || (r + dr) < 0) continue; if((c + dc) > 6 || (c + dc) < 0) continue; int di = (dr*7 + dc) * size; if(state.truth[index+di]) continue; layer.output[index + di] = 0; //if(!state.truth[start+di]) continue; //layer.output[start + di] = 1; } } } typedef struct{ float dx, dy, dw, dh; } dbox; dbox derivative(box a, box b) { dbox d; d.dx = 0; d.dw = 0; float l1 = a.x - a.w/2; float l2 = b.x - b.w/2; if (l1 > l2){ d.dx -= 1; d.dw += .5; } float r1 = a.x + a.w/2; float r2 = b.x + b.w/2; if(r1 < r2){ d.dx += 1; d.dw += .5; } if (l1 > r2) { d.dx = -1; d.dw = 0; } if (r1 < l2){ d.dx = 1; d.dw = 0; } d.dy = 0; d.dh = 0; float t1 = a.y - a.h/2; float t2 = b.y - b.h/2; if (t1 > t2){ d.dy -= 1; d.dh += .5; } float b1 = a.y + a.h/2; float b2 = b.y + b.h/2; if(b1 < b2){ d.dy += 1; d.dh += .5; } if (t1 > b2) { d.dy = -1; d.dh = 0; } if (b1 < t2){ d.dy = 1; d.dh = 0; } return d; } float overlap(float x1, float w1, float x2, float w2) { float l1 = x1 - w1/2; float l2 = x2 - w2/2; float left = l1 > l2 ? l1 : l2; float r1 = x1 + w1/2; float r2 = x2 + w2/2; float right = r1 < r2 ? r1 : r2; return right - left; } float box_intersection(box a, box b) { float w = overlap(a.x, a.w, b.x, b.w); float h = overlap(a.y, a.h, b.y, b.h); if(w < 0 || h < 0) return 0; float area = w*h; return area; } float box_union(box a, box b) { float i = box_intersection(a, b); float u = a.w*a.h + b.w*b.h - i; return u; } float box_iou(box a, box b) { return box_intersection(a, b)/box_union(a, b); } dbox dintersect(box a, box b) { float w = overlap(a.x, a.w, b.x, b.w); float h = overlap(a.y, a.h, b.y, b.h); dbox dover = derivative(a, b); dbox di; di.dw = dover.dw*h; di.dx = dover.dx*h; di.dh = dover.dh*w; di.dy = dover.dy*w; if(h < 0 || w < 0){ di.dx = dover.dx; di.dy = dover.dy; } return di; } dbox dunion(box a, box b) { dbox du = {0,0,0,0};; float w = overlap(a.x, a.w, b.x, b.w); float h = overlap(a.y, a.h, b.y, b.h); if(w > 0 && h > 0){ dbox di = dintersect(a, b); du.dw = h - di.dw; du.dh = w - di.dw; du.dx = -di.dx; du.dy = -di.dy; } return du; } dbox diou(box a, box b) { float u = box_union(a,b); float i = box_intersection(a,b); dbox di = dintersect(a,b); dbox du = dunion(a,b); dbox dd = {0,0,0,0}; if(i < 0) { dd.dx = b.x - a.x; dd.dy = b.y - a.y; dd.dw = b.w - a.w; dd.dh = b.h - a.h; return dd; } dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u); dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u); dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u); dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u); return dd; } void test_box() { box a = {1, 1, 1, 1}; box b = {0, 0, .5, .2}; int count = 0; while(count++ < 300){ dbox d = diou(a, b); printf("%f %f %f %f\n", a.x, a.y, a.w, a.h); a.x += .1*d.dx; a.w += .1*d.dw; a.y += .1*d.dy; a.h += .1*d.dh; printf("inter: %f\n", box_intersection(a, b)); printf("union: %f\n", box_union(a, b)); printf("IOU: %f\n", box_iou(a, b)); if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) { printf("break!!!\n"); break; } } } void forward_detection_layer(const detection_layer layer, network_state state) { int in_i = 0; int out_i = 0; int locations = get_detection_layer_locations(layer); int i,j; for(i = 0; i < layer.batch*locations; ++i){ int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]); float scale = 1; if(layer.rescore) scale = state.input[in_i++]; else if(layer.nuisance){ layer.output[out_i++] = 1-state.input[in_i++]; scale = mask; } else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++]; for(j = 0; j < layer.classes; ++j){ layer.output[out_i++] = scale*state.input[in_i++]; } if(layer.nuisance){ }else if(layer.background){ softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background); activate_array(state.input+in_i, layer.coords, LOGISTIC); } for(j = 0; j < layer.coords; ++j){ layer.output[out_i++] = mask*state.input[in_i++]; } } if(layer.does_cost){ *(layer.cost) = 0; int size = get_detection_layer_output_size(layer) * layer.batch; memset(layer.delta, 0, size * sizeof(float)); for(i = 0; i < layer.batch*locations; ++i){ int classes = layer.nuisance+layer.classes; int offset = i*(classes+layer.coords); for(j = offset; j < offset+classes; ++j){ *(layer.cost) += pow(state.truth[j] - layer.output[j], 2); layer.delta[j] = state.truth[j] - layer.output[j]; } box truth; truth.x = state.truth[j+0]; truth.y = state.truth[j+1]; truth.w = state.truth[j+2]; truth.h = state.truth[j+3]; box out; out.x = layer.output[j+0]; out.y = layer.output[j+1]; out.w = layer.output[j+2]; out.h = layer.output[j+3]; if(!(truth.w*truth.h)) continue; float iou = box_iou(truth, out); //printf("iou: %f\n", iou); *(layer.cost) += pow((1-iou), 2); dbox d = diou(out, truth); layer.delta[j+0] = d.dx; layer.delta[j+1] = d.dy; layer.delta[j+2] = d.dw; layer.delta[j+3] = d.dh; } } /* int count = 0; for(i = 0; i < layer.batch*locations; ++i){ for(j = 0; j < layer.classes+layer.background; ++j){ printf("%f, ", layer.output[count++]); } printf("\n"); for(j = 0; j < layer.coords; ++j){ printf("%f, ", layer.output[count++]); } printf("\n"); } */ /* if(layer.background || 1){ for(i = 0; i < layer.batch*locations; ++i){ int index = i*(layer.classes+layer.coords+layer.background); for(j= 0; j < layer.classes; ++j){ if(state.truth[index+j+layer.background]){ //dark_zone(layer, j, index, state); } } } } */ } void backward_detection_layer(const detection_layer layer, network_state state) { int locations = get_detection_layer_locations(layer); int i,j; int in_i = 0; int out_i = 0; for(i = 0; i < layer.batch*locations; ++i){ float scale = 1; float latent_delta = 0; if(layer.rescore) scale = state.input[in_i++]; else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++]; else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++]; for(j = 0; j < layer.classes; ++j){ latent_delta += state.input[in_i]*layer.delta[out_i]; state.delta[in_i++] = scale*layer.delta[out_i++]; } if (layer.nuisance) { }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); for(j = 0; j < layer.coords; ++j){ state.delta[in_i++] = layer.delta[out_i++]; } if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta; } } #ifdef GPU void forward_detection_layer_gpu(const detection_layer layer, network_state state) { int outputs = get_detection_layer_output_size(layer); float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(layer.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); } cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); network_state cpu_state; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_detection_layer(layer, cpu_state); cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs); free(cpu_state.input); if(cpu_state.truth) free(cpu_state.truth); } void backward_detection_layer_gpu(detection_layer layer, network_state state) { int outputs = get_detection_layer_output_size(layer); float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(layer.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); } network_state cpu_state; cpu_state.train = state.train; cpu_state.input = in_cpu; cpu_state.truth = truth_cpu; cpu_state.delta = delta_cpu; cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs); backward_detection_layer(layer, cpu_state); cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs); free(in_cpu); free(delta_cpu); } #endif