#include "convolutional_layer.h" double convolution_activation(double x) { return x*(x>0); } double convolution_gradient(double x) { return (x>=0); } convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride) { int i; convolutional_layer layer; layer.n = n; layer.stride = stride; layer.kernels = calloc(n, sizeof(image)); layer.kernel_updates = calloc(n, sizeof(image)); for(i = 0; i < n; ++i){ layer.kernels[i] = make_random_kernel(size, c); layer.kernel_updates[i] = make_random_kernel(size, c); } layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n); layer.upsampled = make_image(h,w,n); return layer; } void run_convolutional_layer(const image input, const convolutional_layer layer) { int i; for(i = 0; i < layer.n; ++i){ convolve(input, layer.kernels[i], layer.stride, i, layer.output); } for(i = 0; i < layer.output.h*layer.output.w*layer.output.c; ++i){ layer.output.data[i] = convolution_activation(layer.output.data[i]); } } void backpropagate_convolutional_layer(image input, convolutional_layer layer) { int i; zero_image(input); for(i = 0; i < layer.n; ++i){ back_convolve(input, layer.kernels[i], layer.stride, i, layer.output); } } void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer) { int i,j; for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } zero_image(input); upsample_image(layer.output, layer.stride, layer.upsampled); for(j = 0; j < input.c; ++j){ for(i = 0; i < layer.n; ++i){ two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j); } } for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } } void learn_convolutional_layer(image input, convolutional_layer layer) { int i; for(i = 0; i < layer.n; ++i){ kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output); } image old_input = copy_image(input); backpropagate_convolutional_layer(input, layer); for(i = 0; i < input.h*input.w*input.c; ++i){ input.data[i] *= convolution_gradient(old_input.data[i]); } free_image(old_input); } void update_convolutional_layer(convolutional_layer layer, double step) { int i,j; for(i = 0; i < layer.n; ++i){ int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; for(j = 0; j < pixels; ++j){ layer.kernels[i].data[j] += step*layer.kernel_updates[i].data[j]; } zero_image(layer.kernel_updates[i]); } }