void save_network(network net, char *filename) { FILE *fp = fopen(filename, "w"); if(!fp) file_error(filename); int i; for(i = 0; i < net.n; ++i) { if(net.types[i] == CONVOLUTIONAL) print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i); else if(net.types[i] == DECONVOLUTIONAL) print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i); else if(net.types[i] == CONNECTED) print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i); else if(net.types[i] == CROP) print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i); else if(net.types[i] == MAXPOOL) print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); else if(net.types[i] == DROPOUT) print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i); else if(net.types[i] == SOFTMAX) print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i); else if(net.types[i] == DETECTION) print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i); else if(net.types[i] == COST) print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i); } fclose(fp); } void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count) { #ifdef GPU if(gpu_index >= 0) pull_convolutional_layer(*l); #endif int i; fprintf(fp, "[convolutional]\n"); fprintf(fp, "filters=%d\n" "size=%d\n" "stride=%d\n" "pad=%d\n" "activation=%s\n", l->n, l->size, l->stride, l->pad, get_activation_string(l->activation)); fprintf(fp, "biases="); for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); fprintf(fp, "\n"); fprintf(fp, "weights="); for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); fprintf(fp, "\n\n"); } void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count) { #ifdef GPU if(gpu_index >= 0) pull_deconvolutional_layer(*l); #endif int i; fprintf(fp, "[deconvolutional]\n"); fprintf(fp, "filters=%d\n" "size=%d\n" "stride=%d\n" "activation=%s\n", l->n, l->size, l->stride, get_activation_string(l->activation)); fprintf(fp, "biases="); for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); fprintf(fp, "\n"); fprintf(fp, "weights="); for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); fprintf(fp, "\n\n"); } void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count) { fprintf(fp, "[dropout]\n"); fprintf(fp, "probability=%g\n\n", l->probability); } void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) { #ifdef GPU if(gpu_index >= 0) pull_connected_layer(*l); #endif int i; fprintf(fp, "[connected]\n"); fprintf(fp, "output=%d\n" "activation=%s\n", l->outputs, get_activation_string(l->activation)); fprintf(fp, "biases="); for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); fprintf(fp, "\n"); fprintf(fp, "weights="); for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]); fprintf(fp, "\n\n"); } void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count) { fprintf(fp, "[crop]\n"); fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip); } void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) { fprintf(fp, "[maxpool]\n"); fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride); } void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count) { fprintf(fp, "[softmax]\n"); fprintf(fp, "\n"); } void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count) { fprintf(fp, "[detection]\n"); fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance); fprintf(fp, "\n"); } void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count) { fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type)); fprintf(fp, "\n"); } #ifndef NORMALIZATION_LAYER_H #define NORMALIZATION_LAYER_H #include "image.h" #include "params.h" typedef struct { int batch; int h,w,c; int size; float alpha; float beta; float kappa; float *delta; float *output; float *sums; } normalization_layer; image get_normalization_image(normalization_layer layer); normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa); void resize_normalization_layer(normalization_layer *layer, int h, int w); void forward_normalization_layer(const normalization_layer layer, network_state state); void backward_normalization_layer(const normalization_layer layer, network_state state); void visualize_normalization_layer(normalization_layer layer, char *window); #endif #include "normalization_layer.h" #include image get_normalization_image(normalization_layer layer) { int h = layer.h; int w = layer.w; int c = layer.c; return float_to_image(w,h,c,layer.output); } image get_normalization_delta(normalization_layer layer) { int h = layer.h; int w = layer.w; int c = layer.c; return float_to_image(w,h,c,layer.delta); } normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa) { fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size); normalization_layer *layer = calloc(1, sizeof(normalization_layer)); layer->batch = batch; layer->h = h; layer->w = w; layer->c = c; layer->kappa = kappa; layer->size = size; layer->alpha = alpha; layer->beta = beta; layer->output = calloc(h * w * c * batch, sizeof(float)); layer->delta = calloc(h * w * c * batch, sizeof(float)); layer->sums = calloc(h*w, sizeof(float)); return layer; } void resize_normalization_layer(normalization_layer *layer, int h, int w) { layer->h = h; layer->w = w; layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float)); layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float)); layer->sums = realloc(layer->sums, h*w * sizeof(float)); } void add_square_array(float *src, float *dest, int n) { int i; for(i = 0; i < n; ++i){ dest[i] += src[i]*src[i]; } } void sub_square_array(float *src, float *dest, int n) { int i; for(i = 0; i < n; ++i){ dest[i] -= src[i]*src[i]; } } void forward_normalization_layer(const normalization_layer layer, network_state state) { int i,j,k; memset(layer.sums, 0, layer.h*layer.w*sizeof(float)); int imsize = layer.h*layer.w; for(j = 0; j < layer.size/2; ++j){ if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize); } for(k = 0; k < layer.c; ++k){ int next = k+layer.size/2; int prev = k-layer.size/2-1; if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize); if(prev > 0) sub_square_array(state.input+prev*imsize, layer.sums, imsize); for(i = 0; i < imsize; ++i){ layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta); } } } void backward_normalization_layer(const normalization_layer layer, network_state state) { // TODO! // OR NOT TODO!! } void visualize_normalization_layer(normalization_layer layer, char *window) { image delta = get_normalization_image(layer); image dc = collapse_image_layers(delta, 1); char buff[256]; sprintf(buff, "%s: Output", window); show_image(dc, buff); save_image(dc, buff); free_image(dc); } void test_load() { image dog = load_image("dog.jpg", 300, 400); show_image(dog, "Test Load"); show_image_layers(dog, "Test Load"); } void test_parser() { network net = parse_network_cfg("cfg/trained_imagenet.cfg"); save_network(net, "cfg/trained_imagenet_smaller.cfg"); } void test_init(char *cfgfile) { gpu_index = -1; network net = parse_network_cfg(cfgfile); set_batch_network(&net, 1); srand(2222222); int i = 0; char *filename = "data/test.jpg"; image im = load_image_color(filename, 256, 256); //z_normalize_image(im); translate_image(im, -128); scale_image(im, 1/128.); float *X = im.data; forward_network(net, X, 0, 1); for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; image output = get_convolutional_image(layer); int size = output.h*output.w*output.c; float v = variance_array(layer.output, size); float m = mean_array(layer.output, size); printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; int size = layer.outputs; float v = variance_array(layer.output, size); float m = mean_array(layer.output, size); printf("%d: Connected, mean: %f, variance %f\n", i, m, v); } } free_image(im); } void test_dog(char *cfgfile) { image im = load_image_color("data/dog.jpg", 256, 256); translate_image(im, -128); print_image(im); float *X = im.data; network net = parse_network_cfg(cfgfile); set_batch_network(&net, 1); network_predict(net, X); image crop = get_network_image_layer(net, 0); show_image(crop, "cropped"); print_image(crop); show_image(im, "orig"); float * inter = get_network_output(net); pm(1000, 1, inter); cvWaitKey(0); } void test_voc_segment(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); while(1){ char filename[256]; fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, 500, 500); //resize_network(net, im.h, im.w, im.c); translate_image(im, -128); scale_image(im, 1/128.); //float *predictions = network_predict(net, im.data); network_predict(net, im.data); free_image(im); image output = get_network_image_layer(net, net.n-2); show_image(output, "Segment Output"); cvWaitKey(0); } } void test_visualize(char *filename) { network net = parse_network_cfg(filename); visualize_network(net); cvWaitKey(0); } void test_cifar10(char *cfgfile) { network net = parse_network_cfg(cfgfile); data test = load_cifar10_data("data/cifar10/test_batch.bin"); clock_t start = clock(), end; float test_acc = network_accuracy_multi(net, test, 10); end = clock(); printf("%f in %f Sec\n", test_acc, sec(end-start)); //visualize_network(net); //cvWaitKey(0); } void train_cifar10(char *cfgfile) { srand(555555); srand(time(0)); network net = parse_network_cfg(cfgfile); data test = load_cifar10_data("data/cifar10/test_batch.bin"); int count = 0; int iters = 50000/net.batch; data train = load_all_cifar10(); while(++count <= 10000){ clock_t time = clock(); float loss = train_network_sgd(net, train, iters); if(count%10 == 0){ float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time)); char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count); save_network(net, buff); }else{ printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time)); } } free_data(train); } void compare_nist(char *p1,char *p2) { srand(222222); network n1 = parse_network_cfg(p1); network n2 = parse_network_cfg(p2); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(test); compare_networks(n1, n2, test); } void test_nist(char *path) { srand(222222); network net = parse_network_cfg(path); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(test); clock_t start = clock(), end; float test_acc = network_accuracy(net, test); end = clock(); printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); } void train_nist(char *cfgfile) { srand(222222); // srand(time(0)); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); network net = parse_network_cfg(cfgfile); int count = 0; int iters = 6000/net.batch + 1; while(++count <= 100){ clock_t start = clock(), end; normalize_data_rows(train); normalize_data_rows(test); float loss = train_network_sgd(net, train, iters); float test_acc = 0; if(count%1 == 0) test_acc = network_accuracy(net, test); end = clock(); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); } free_data(train); free_data(test); char buff[256]; sprintf(buff, "%s.trained", cfgfile); save_network(net, buff); } /* void train_nist_distributed(char *address) { srand(time(0)); network net = parse_network_cfg("cfg/nist.client"); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(train); //normalize_data_rows(test); int count = 0; int iters = 50000/net.batch; iters = 1000/net.batch + 1; while(++count <= 2000){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); client_update(net, address); end = clock(); //float test_acc = network_accuracy_gpu(net, test); //float test_acc = 0; printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); } } */ void test_ensemble() { int i; srand(888888); data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); normalize_data_rows(d); data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); normalize_data_rows(test); data train = d; // data *split = split_data(d, 1, 10); // data train = split[0]; // data test = split[1]; matrix prediction = make_matrix(test.y.rows, test.y.cols); int n = 30; for(i = 0; i < n; ++i){ int count = 0; float lr = .0005; float momentum = .9; float decay = .01; network net = parse_network_cfg("nist.cfg"); while(++count <= 15){ float acc = train_network_sgd(net, train, train.X.rows); printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); lr /= 2; } matrix partial = network_predict_data(net, test); float acc = matrix_topk_accuracy(test.y, partial,1); printf("Model Accuracy: %lf\n", acc); matrix_add_matrix(partial, prediction); acc = matrix_topk_accuracy(test.y, prediction,1); printf("Current Ensemble Accuracy: %lf\n", acc); free_matrix(partial); } float acc = matrix_topk_accuracy(test.y, prediction,1); printf("Full Ensemble Accuracy: %lf\n", acc); } void visualize_cat() { network net = parse_network_cfg("cfg/voc_imagenet.cfg"); image im = load_image_color("data/cat.png", 0, 0); printf("Processing %dx%d image\n", im.h, im.w); resize_network(net, im.h, im.w, im.c); forward_network(net, im.data, 0, 0); visualize_network(net); cvWaitKey(0); } void test_correct_nist() { network net = parse_network_cfg("cfg/nist_conv.cfg"); srand(222222); net = parse_network_cfg("cfg/nist_conv.cfg"); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); normalize_data_rows(train); normalize_data_rows(test); int count = 0; int iters = 1000/net.batch; while(++count <= 5){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); end = clock(); float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); } save_network(net, "cfg/nist_gpu.cfg"); gpu_index = -1; count = 0; srand(222222); net = parse_network_cfg("cfg/nist_conv.cfg"); while(++count <= 5){ clock_t start = clock(), end; float loss = train_network_sgd(net, train, iters); end = clock(); float test_acc = network_accuracy(net, test); printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); } save_network(net, "cfg/nist_cpu.cfg"); } void test_correct_alexnet() { char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); list *plist = get_paths("/data/imagenet/cls.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; int count = 0; network net; srand(222222); net = parse_network_cfg("cfg/net.cfg"); int imgs = net.batch; count = 0; while(++count <= 5){ time=clock(); data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); free_data(train); } gpu_index = -1; count = 0; srand(222222); net = parse_network_cfg("cfg/net.cfg"); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); while(++count <= 5){ time=clock(); data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256); normalize_data_rows(train); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); free_data(train); } } /* void run_server() { srand(time(0)); network net = parse_network_cfg("cfg/net.cfg"); set_batch_network(&net, 1); server_update(net); } void test_client() { network net = parse_network_cfg("cfg/alexnet.client"); clock_t time=clock(); client_update(net, "localhost"); printf("1\n"); client_update(net, "localhost"); printf("2\n"); client_update(net, "localhost"); printf("3\n"); printf("Transfered: %lf seconds\n", sec(clock()-time)); } */