#include "network.h" #include "detection_layer.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; void draw_detection(image im, float *box, int side, char *label) { int classes = 20; int elems = 4+classes; int j; int r, c; for(r = 0; r < side; ++r){ for(c = 0; c < side; ++c){ j = (r*side + c) * elems; int class = max_index(box+j, classes); if(box[j+class] > .2){ printf("%f %s\n", box[j+class], class_names[class]); float red = get_color(0,class,classes); float green = get_color(1,class,classes); float blue = get_color(2,class,classes); j += classes; float x = box[j+0]; float y = box[j+1]; x = (x+c)/side; y = (y+r)/side; float w = box[j+2]; //*maxwidth; float h = box[j+3]; //*maxheight; h = h*h; w = w*w; int left = (x-w/2)*im.w; int right = (x+w/2)*im.w; int top = (y-h/2)*im.h; int bot = (y+h/2)*im.h; draw_box(im, left, top, right, bot, red, green, blue); draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue); draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue); } } } show_image(im, label); } void train_detection(char *cfgfile, char *weightfile) { srand(time(0)); data_seed = time(0); int imgnet = 0; char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } detection_layer layer = get_network_detection_layer(net); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 128; int i = net.seen/imgs; data train, buffer; int classes = layer.classes; int background = (layer.background || layer.objectness); int side = sqrt(get_detection_layer_locations(layer)); char **paths; list *plist; if (imgnet){ plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); }else{ //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); } paths = (char **)list_to_array(plist); pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); clock_t time; while(1){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); /* image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); image copy = copy_image(im); draw_detection(copy, train.y.vals[114], 7, "truth"); cvWaitKey(0); free_image(copy); */ printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); net.seen += imgs; if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); if(i == 100){ net.learning_rate *= 10; } if(i%1000==0){ char buff[256]; sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); save_weights(net, buff); } free_data(train); } } void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box) { matrix pred = network_predict_data(net, d); int j, k, class; for(j = 0; j < pred.rows; ++j){ for(k = 0; k < pred.cols; k += per_box){ float scale = 1.; int index = k/per_box; int row = index / num_boxes; int col = index % num_boxes; if (objectness) scale = 1.-pred.vals[j][k]; for (class = 0; class < classes; ++class){ int ci = k+classes+(background || objectness); float x = (pred.vals[j][ci + 0] + col)/num_boxes; float y = (pred.vals[j][ci + 1] + row)/num_boxes; float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes); float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes); w = pow(w, 2); h = pow(h, 2); float prob = scale*pred.vals[j][k+class+(background || objectness)]; if(prob < threshold) continue; printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h); } } } free_matrix(pred); } void validate_detection(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } detection_layer layer = get_network_detection_layer(net); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); char **paths = (char **)list_to_array(plist); int classes = layer.classes; int objectness = layer.objectness; int background = layer.background; int num_boxes = sqrt(get_detection_layer_locations(layer)); int per_box = 4+classes+(background || objectness); int num_output = num_boxes*num_boxes*per_box; int m = plist->size; int i = 0; int splits = 100; int nthreads = 4; int t; data *val = calloc(nthreads, sizeof(data)); data *buf = calloc(nthreads, sizeof(data)); pthread_t *thr = calloc(nthreads, sizeof(data)); time_t start = time(0); for(t = 0; t < nthreads; ++t){ int num = (i+1+t)*m/splits - (i+t)*m/splits; char **part = paths+((i+t)*m/splits); thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); } for(i = nthreads; i <= splits; i += nthreads){ for(t = 0; t < nthreads; ++t){ pthread_join(thr[t], 0); val[t] = buf[t]; } for(t = 0; t < nthreads && i < splits; ++t){ int num = (i+1+t)*m/splits - (i+t)*m/splits; char **part = paths+((i+t)*m/splits); thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); } fprintf(stderr, "%d\n", i); for(t = 0; t < nthreads; ++t){ predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box); free_data(val[t]); } } fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); } void test_detection(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } detection_layer layer = get_network_detection_layer(net); if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n"); int im_size = 448; set_batch_network(&net, 1); srand(2222222); clock_t time; char filename[256]; while(1){ printf("Image Path: "); fflush(stdout); fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename,0,0); image sized = resize_image(im, im_size, im_size); float *X = sized.data; time=clock(); float *predictions = network_predict(net, X); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); draw_detection(im, predictions, 7, "predictions"); free_image(im); free_image(sized); #ifdef OPENCV cvWaitKey(0); #endif } } void run_detection(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; if(0==strcmp(argv[2], "test")) test_detection(cfg, weights); else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights); }