from glob import glob import matplotlib.pyplot as plt import matplotlib.image as mpimage import pickle import math import random import os # Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection class Backgrounds: def __init__(self, images=None, dumps_dir='data/dtd/images'): if images is not None: self._images = images else: # load from pickle if not os.path.exists(dumps_dir): print('Warning: directory for dump %s doesn\'t exist' % dumps_dir) return self._images = [] for dump_name in glob(dumps_dir + '/*.pck'): with open(dump_name, 'rb') as dump: print('Loading ' + dump_name) images = pickle.load(dump) self._images += images if len(self._images) == 0: self._images = load_dtd() print('# of images loaded: %d' % len(self._images)) def get_random(self, display=False): bg = self._images[random.randint(0, len(self._images) - 1)] if display: plt.show(bg) return bg def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000): if not os.path.exists(dtd_dir): print('Warning: directory for DTD 5s doesn\'t exist.' % dtd_dir) print('You can download the dataset using this command:' '!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz') return [] bg_images = [] # Search the directory for all images, and append them for subdir in glob(dtd_dir + "/*"): for f in glob(subdir + "/*.jpg"): bg_images.append(mpimage.imread(f)) print("# of images loaded :", len(bg_images)) # Save them as a pickle if necessary if dump_it: for i in range(math.ceil(len(bg_images) / dump_batch_size)): dump_name = '%s/dtd_dump_%d.pck' % (dtd_dir, i) with open(dump_name, 'wb') as dump: print('Dumping ' + dump_name) pickle.dump(bg_images[i * dump_batch_size:(i + 1) * dump_batch_size], dump) return bg_images def main(): #bg_images = load_dtd() bg = Backgrounds() bg.get_random(display=True) return if __name__ == '__main__': main()