import random import math import cv2 import numpy as np import imutils import pandas as pd import fetch_data card_mask = cv2.imread('data/mask.png') class ImageGenerator: """ A template for generating a training image. """ def __init__(self, img_bg, cards, width, height): """ :param img_bg: background (textile) image :param cards: list of Card objects :param width: width of the training image :param height: height of the training image """ self.img_bg = img_bg self.cards = cards self.img_result = None self.width = width self.height = height pass def display(self): """ Display the current state of the generator :return: none """ img_bg = cv2.resize(self.img_bg, (self.width, self.height)) for card in self.cards: print(card.x, card.y, card.theta, card.scale) # Scale & rotate card image img_card = cv2.resize(card.img, (int(len(card.img[0]) * card.scale), int(len(card.img) * card.scale))) mask_scale = cv2.resize(card_mask, (int(len(card_mask[0]) * card.scale), int(len(card_mask) * card.scale))) img_mask = cv2.bitwise_and(img_card, mask_scale) img_rotate = imutils.rotate_bound(img_mask, card.theta / math.pi * 180) print(len(img_rotate[0]), len(img_rotate)) # Calculate the position of the card image in relation to the background # Crop the card image if it's out of boundary card_w = len(img_rotate[0]) card_h = len(img_rotate) #card_crop_x1 = min(0, card_w // 2 - card.x) #card_crop_x2 = min(card_w, card_w // 2 + len(img_bg[0]) - card.x) #card_crop_y1 = min(0, card_h // 2 - card.y) #card_crop_y2 = min(card_h, card_h // 2 + len(img_bg) - card.y) card_crop_x1 = card_w // 2 - card.x card_crop_x2 = card_w // 2 + len(img_bg[0]) - card.x card_crop_y1 = card_h // 2 - card.y card_crop_y2 = card_h // 2 + len(img_bg) - card.y img_card_crop = img_rotate[max(0, card_crop_y1):min(card_h, card_crop_y2), max(0, card_crop_x1):min(card_w, card_crop_x2)] #print(card_crop_x1, card_crop_x2, card_crop_y1, card_crop_y2) print(len(img_card_crop[0]), len(img_card_crop)) # Calculate the position of the corresponding area in the background bg_crop_x1 = max(0, card.x - (card_w // 2)) bg_crop_x2 = min(len(img_bg[0]), int(card.x + (card_w / 2) + 0.5)) bg_crop_y1 = max(0, card.y - (card_h // 2)) bg_crop_y2 = min(len(img_bg), int(card.y + (card_h / 2) + 0.5)) img_bg_crop = img_bg[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] #bg_crop_x1 = card.x - (card_w // 2) #bg_crop_x2 = int(card.x + card_w / 2 + 0.5) #bg_crop_y1 = card.y - (card_h // 2) #bg_crop_y2 = int(card.y + card_h / 2 + 0.5) #img_bg_crop = img_bg[max(0, bg_crop_y1):min(len(img_bg), bg_crop_y2), # max(0, bg_crop_x1):min(len(img_bg[0]), bg_crop_x2)] #print(bg_crop_x1, bg_crop_x2, bg_crop_y1, bg_crop_y2) print(len(img_bg_crop[0]), len(img_bg_crop)) #cv2.circle(img_bg, (card.x, card.y), 2, (0, 0, 255), 3) #cv2.rectangle(img_bg, (0, 0), (len(img_rotate[0]), len(img_rotate)), (0, 255, 0), 3) #cv2.rectangle(img_bg, (bg_crop_x1, bg_crop_y1), (bg_crop_x2, bg_crop_y2), (255, 0, 0), 3) #cv2.imshow('test', img_bg) #cv2.waitKey(0) mask1 = img_card_crop[:, :, 1] a_mask1 = np.stack([mask1] * 3, -1) img_bg_crop = np.where(a_mask1, img_card_crop[:, :, 0:3], img_bg_crop) img_bg[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] = img_bg_crop cv2.imshow('Result', img_bg) cv2.waitKey(0) pass def generate_horizontal_span(self): """ Generating the first scenario where the cards are laid out in a straight horizontal line :return: none """ pass def generate_vertical_span(self): """ Generating the second scenario where the cards are laid out in a straight vertical line :return: none """ pass def generate_fan_out(self): """ Generating the third scenario where the cards are laid out in a fan shape :return: none """ pass def export_training_data(self, out_dir): """ Export the generated training image along with the txt file for all bounding boxes :return: none """ pass class Card: """ A class for storing required information about a card in relation to the ImageGenerator """ def __init__(self, img, card_info, objects, generator=None, x=None, y=None, theta=None, scale=None): """ :param img: image of the card :param card_info: details like name, mana cost, type, set, etc :param objects: list of ExtractedObjects like mana & set symbol, etc :param generator: ImageGenerator object that the card is bound to :param x: X-coordinate of the card's centre in relation to the generator :param y: Y-coordinate of the card's centre in relation to the generator :param theta: angle of rotation of the card in relation to the generator :param scale: scale of the card in the generator in relation to the original image """ self.img = img self.info = card_info self.objects = objects self.generator = generator self.x = x self.y = y self.theta = theta self.scale = scale pass def bind_to_generator(self, generator, x=0, y=0, theta=0.0, scale=1.0): """ Bind this card to an ImageGenerator object. :param generator: generator to be bound with :param x: new X-coordinate for the centre of the card :param y: new Y-coordinate for the centre of the card :param theta: new angle for the card :param scale: new scale for the card :return: none """ self.generator = generator self.x = x self.y = y self.theta = theta self.scale = scale generator.cards.append(self) pass def shift(self, x, y): """ Apply a X/Y translation on this image :param x: amount of X-translation. If range is given, translate by a random amount within that range :param y: amount of Y-translation. Refer to x when a range is given. :return: none """ if isinstance(x, tuple) or (isinstance(x, list) and len(x) == 2): self.x += random.uniform(x[0], x[1]) else: self.x += x if isinstance(y, tuple) or (isinstance(y, list) and len(y) == 2): self.y += random.uniform(y[0], y[1]) else: self.y += y pass def rotate(self, centre, theta=None): """ Apply a rotation on this image with a centre :param centre: coordinate of the centre of the rotation in relation to the centre of this card :param theta: amount of rotation in radian (clockwise). If a range is given, rotate by a random amount within that range :return: none """ if isinstance(theta, tuple) or (isinstance(theta, list) and len(theta) == 2): theta = random.uniform(theta[0], theta[1]) x = self.x.copy() y = self.y.copy() # Translate the coordinate to make the centre of rotation be at (0, 0) x -= centre[0] y -= centre[1] # Do the rotation math x_rotate = y * math.sin(theta) + x * math.cos(theta) y_rotate = y * math.cos(theta) - x * math.sin(theta) # Negate the initial offset self.x = x_rotate + centre[0] self.y = y_rotate + centre[1] self.theta += theta pass class ExtractedObject: """ Simple struct to hold information about an extracted object """ def __init__(self, label, key_pts): self.label = label self.key_pts = key_pts def main(): random.seed() img_bg = cv2.imread('data/frilly_0007.jpg') #img = cv2.imread('data/c16-143-burgeoning.png') generator = ImageGenerator(img_bg, [], 1440, 960) card_pool = pd.DataFrame() for set_name in fetch_data.all_set_list: df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name) card_info = df.iloc[random.randint(0, df.shape[0] - 1)] # Currently ignoring planeswalker cards due to their different card layout is_planeswalker = 'Planeswalker' in card_info['type_line'] if not is_planeswalker: card_pool = card_pool.append(card_info) for i in [random.randrange(0, card_pool.shape[0] - 1, 1) for _ in range(10)]: card_info = card_pool.iloc[i] img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'], fetch_data.get_valid_filename(card_info['name'])) print(img_name) card_img = cv2.imread(img_name) if card_img is None: fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set']) card_img = cv2.imread(img_name) card = Card(card_img, card_info, None) card.bind_to_generator(generator, x=random.randint(0, generator.width), y=random.randint(0, generator.height), theta=random.uniform(0, math.pi / 2), scale=0.5) generator.display() ''' img_mask = cv2.bitwise_and(img, mask) img_rotate = imutils.rotate_bound(img_mask, 45) #cv2.imshow('rotated', img_rotate) #cv2.waitKey(0) mask1 = img_rotate[:, :, 1] cv2.imshow('mask', mask1) a_mask1 = np.stack([mask1] * 3, -1) cv2.imshow('a_mask', a_mask1) img_bg = cv2.resize(img_bg, (len(img_rotate[0]), len(img_rotate))) final = np.where(a_mask1, img_rotate[:, :, 0:3], img_bg) final = cv2.resize(final, (len(final[0]) // 2, len(final) // 2)) cv2.imshow('final', final) cv2.waitKey(0) ''' pass if __name__ == '__main__': main()