#include "connected_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" #include "gemm.h" #include #include #include #include connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay) { int i; connected_layer *layer = calloc(1, sizeof(connected_layer)); layer->learning_rate = learning_rate; layer->momentum = momentum; layer->decay = decay; layer->inputs = inputs; layer->outputs = outputs; layer->batch=batch; layer->output = calloc(batch*outputs, sizeof(float*)); layer->delta = calloc(batch*outputs, sizeof(float*)); layer->weight_updates = calloc(inputs*outputs, sizeof(float)); layer->bias_updates = calloc(outputs, sizeof(float)); layer->weight_prev = calloc(inputs*outputs, sizeof(float)); layer->bias_prev = calloc(outputs, sizeof(float)); layer->weights = calloc(inputs*outputs, sizeof(float)); layer->biases = calloc(outputs, sizeof(float)); float scale = 1./sqrt(inputs); //scale = .01; for(i = 0; i < inputs*outputs; ++i){ layer->weights[i] = scale*rand_normal(); } for(i = 0; i < outputs; ++i){ layer->biases[i] = scale; // layer->biases[i] = 1; } #ifdef GPU layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs); layer->biases_gpu = cuda_make_array(layer->biases, outputs); layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs); layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs); layer->output_gpu = cuda_make_array(layer->output, outputs*batch); layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch); #endif layer->activation = activation; fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); return layer; } void secret_update_connected_layer(connected_layer *layer) { int n = layer->outputs*layer->inputs; float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1); float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1)) * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1)); float cos = dot/mag; if(cos > .3) layer->learning_rate *= 1.1; else if (cos < -.3) layer-> learning_rate /= 1.1; scal_cpu(n, layer->momentum, layer->weight_prev, 1); axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1); scal_cpu(n, 0, layer->weight_updates, 1); scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1); axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1); scal_cpu(layer->outputs, 0, layer->bias_updates, 1); axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1); axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1); axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1); } void update_connected_layer(connected_layer layer) { axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1); axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1); axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1); scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1); } void forward_connected_layer(connected_layer layer, float *input) { int i; for(i = 0; i < layer.batch; ++i){ copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1); } int m = layer.batch; int k = layer.inputs; int n = layer.outputs; float *a = input; float *b = layer.weights; float *c = layer.output; gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); activate_array(layer.output, layer.outputs*layer.batch, layer.activation); } void backward_connected_layer(connected_layer layer, float *input, float *delta) { int i; float alpha = 1./layer.batch; gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); for(i = 0; i < layer.batch; ++i){ axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); } int m = layer.inputs; int k = layer.batch; int n = layer.outputs; float *a = input; float *b = layer.delta; float *c = layer.weight_updates; gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n); m = layer.batch; k = layer.outputs; n = layer.inputs; a = layer.delta; b = layer.weights; c = delta; if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); } #ifdef GPU void pull_connected_layer(connected_layer layer) { cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs); cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); } void push_connected_layer(connected_layer layer) { cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs); cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); } void update_connected_layer_gpu(connected_layer layer) { /* cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs)); */ axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1); axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1); } void forward_connected_layer_gpu(connected_layer layer, float * input) { int i; for(i = 0; i < layer.batch; ++i){ copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1); } int m = layer.batch; int k = layer.inputs; int n = layer.outputs; float * a = input; float * b = layer.weights_gpu; float * c = layer.output_gpu; gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation); } void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta) { float alpha = 1./layer.batch; int i; gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu); for(i = 0; i < layer.batch; ++i){ axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); } int m = layer.inputs; int k = layer.batch; int n = layer.outputs; float * a = input; float * b = layer.delta_gpu; float * c = layer.weight_updates_gpu; gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n); m = layer.batch; k = layer.outputs; n = layer.inputs; a = layer.delta_gpu; b = layer.weights_gpu; c = delta; if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); } #endif