import cv2 import numpy as np import math from screeninfo import get_monitors """ This is the first attempt of identifying MTG cards using only classical computer vision technique. Most of the processes are similar to the process used in opencv_dnn.py, but it instead tries to use Hough transformation to identify straight edges of the card. However, there were difficulties trying to associate multiple edges into a rectangle, as some of them either didn't show up or was too short to intersect. There were also no method to dynamically adjust various threshold, even finding all the edges were very conditional. """ def detect_a_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200, min_line_length=None, max_line_gap=None, debug=False): dim_img = (len(img[0]), len(img)) # (width, height) # Intermediate variables # Default values if blur_radius is None: blur_radius = math.floor(min(dim_img) / 100 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd if dilate_radius is None: dilate_radius = math.floor(min(dim_img) / 67 + 0.5) if min_line_length is None: min_line_length = min(dim_img) / 10 if max_line_gap is None: max_line_gap = min(dim_img) / 10 thresh_radius = math.floor(min(dim_img) / 20 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Median blur better removes background textures than Gaussian blur img_blur = cv2.medianBlur(img_gray, blur_radius) # Truncate the bright area while detecting the border img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, thresh_radius, 20) #_, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC) # Dilate the image to emphasize thick borders around the card kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8) #img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1) img_dilate = cv2.erode(img_thresh, kernel_dilate, iterations=1) img_contour = img_dilate.copy() _, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR) img_contour = cv2.drawContours(img_contour, contours, -1, (128, 128, 128), 1) card_found = contours is not None print(len(contours)) print([len(contour) for contour in contours]) # find the biggest area c = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(c) # draw the book contour (in green) img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1) # Canny edge - low minimum hysteresis to detect glowed area, # and high maximum hysteresis to compensate for high false positives. img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst) #img_canny = img_dilate # Apply Hough transformation to detect the edges detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=60, minLineLength=min_line_length, maxLineGap=max_line_gap) card_found = detected_lines is not None print(len(detected_lines)) if card_found: if debug: img_hough = cv2.cvtColor(img_dilate.copy(), cv2.COLOR_GRAY2BGR) for line in detected_lines: x1, y1, x2, y2 = line[0] cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1) elif not debug: print('Hough couldn\'t find any lines') # Debug: display intermediate results from various steps if debug: img_blank = np.zeros((len(img), len(img[0]), 3), np.uint8) img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR) img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR) #img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR) if not card_found: img_hough = img_blank # Append all images together img_row_1 = np.concatenate((img, img_thresh), axis=1) img_row_2 = np.concatenate((img_contour, img_hough), axis=1) img_result = np.concatenate((img_row_1, img_row_2), axis=0) # Resize the final image to fit into the main monitor's resolution screen_size = get_monitors()[0] resize_ratio = max(len(img_result[0]) / screen_size.width, len(img_result) / screen_size.height, 1) img_result = cv2.resize(img_result, (int(len(img_result[0]) // resize_ratio), int(len(img_result) // resize_ratio))) cv2.imshow('Result', img_result) cv2.waitKey(0) # TODO: output meaningful data return card_found def main(): img_test = cv2.imread('data/li38_handOfCards.jpg') card_found = detect_a_card(img_test, #dilate_radius=5, #thresh_val=100, #min_hyst=40, #max_hyst=160, #min_line_length=50, #max_line_gap=100, debug=True) if card_found: return return for dilate_radius in range(1, 6): for min_hyst in range(50, 91, 10): for max_hyst in range(180, 119, -20): print('dilate_radius=%d, min_hyst=%d, max_hyst=%d: ' % (dilate_radius, min_hyst, max_hyst), end='', flush=True) card_found = detect_a_card(img_test, dilate_radius=dilate_radius, min_hyst=min_hyst, max_hyst=max_hyst, debug=True) if card_found: print('Card found') else: print('Not found') if __name__ == '__main__': main()