#include "detection_layer.h" #include "activations.h" #include "softmax_layer.h" #include "blas.h" #include "cuda.h" #include "utils.h" #include #include #include int get_detection_layer_locations(detection_layer l) { return l.inputs / (l.classes+l.coords+l.rescore+l.background); } int get_detection_layer_output_size(detection_layer l) { return get_detection_layer_locations(l)*(l.background + l.classes + l.coords); } detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance) { detection_layer l = {0}; l.type = DETECTION; l.batch = batch; l.inputs = inputs; l.classes = classes; l.coords = coords; l.rescore = rescore; l.nuisance = nuisance; l.cost = calloc(1, sizeof(float)); l.does_cost=1; l.background = background; int outputs = get_detection_layer_output_size(l); l.outputs = outputs; l.output = calloc(batch*outputs, sizeof(float)); l.delta = calloc(batch*outputs, sizeof(float)); #ifdef GPU l.output_gpu = cuda_make_array(0, batch*outputs); l.delta_gpu = cuda_make_array(0, batch*outputs); #endif fprintf(stderr, "Detection Layer\n"); srand(0); return l; } void dark_zone(detection_layer l, int class, int start, network_state state) { int index = start+l.background+class; int size = l.classes+l.coords+l.background; int location = (index%(7*7*size)) / size ; int r = location / 7; int c = location % 7; int dr, dc; for(dr = -1; dr <= 1; ++dr){ for(dc = -1; dc <= 1; ++dc){ if(!(dr || dc)) continue; if((r + dr) > 6 || (r + dr) < 0) continue; if((c + dc) > 6 || (c + dc) < 0) continue; int di = (dr*7 + dc) * size; if(state.truth[index+di]) continue; l.output[index + di] = 0; //if(!state.truth[start+di]) continue; //l.output[start + di] = 1; } } } typedef struct{ float dx, dy, dw, dh; } dbox; dbox derivative(box a, box b) { dbox d; d.dx = 0; d.dw = 0; float l1 = a.x - a.w/2; float l2 = b.x - b.w/2; if (l1 > l2){ d.dx -= 1; d.dw += .5; } float r1 = a.x + a.w/2; float r2 = b.x + b.w/2; if(r1 < r2){ d.dx += 1; d.dw += .5; } if (l1 > r2) { d.dx = -1; d.dw = 0; } if (r1 < l2){ d.dx = 1; d.dw = 0; } d.dy = 0; d.dh = 0; float t1 = a.y - a.h/2; float t2 = b.y - b.h/2; if (t1 > t2){ d.dy -= 1; d.dh += .5; } float b1 = a.y + a.h/2; float b2 = b.y + b.h/2; if(b1 < b2){ d.dy += 1; d.dh += .5; } if (t1 > b2) { d.dy = -1; d.dh = 0; } if (b1 < t2){ d.dy = 1; d.dh = 0; } return d; } float overlap(float x1, float w1, float x2, float w2) { float l1 = x1 - w1/2; float l2 = x2 - w2/2; float left = l1 > l2 ? l1 : l2; float r1 = x1 + w1/2; float r2 = x2 + w2/2; float right = r1 < r2 ? r1 : r2; return right - left; } float box_intersection(box a, box b) { float w = overlap(a.x, a.w, b.x, b.w); float h = overlap(a.y, a.h, b.y, b.h); if(w < 0 || h < 0) return 0; float area = w*h; return area; } float box_union(box a, box b) { float i = box_intersection(a, b); float u = a.w*a.h + b.w*b.h - i; return u; } float box_iou(box a, box b) { return box_intersection(a, b)/box_union(a, b); } dbox dintersect(box a, box b) { float w = overlap(a.x, a.w, b.x, b.w); float h = overlap(a.y, a.h, b.y, b.h); dbox dover = derivative(a, b); dbox di; di.dw = dover.dw*h; di.dx = dover.dx*h; di.dh = dover.dh*w; di.dy = dover.dy*w; return di; } dbox dunion(box a, box b) { dbox du; dbox di = dintersect(a, b); du.dw = a.h - di.dw; du.dh = a.w - di.dh; du.dx = -di.dx; du.dy = -di.dy; return du; } dbox diou(box a, box b); void test_dunion() { box a = {0, 0, 1, 1}; box dxa= {0+.0001, 0, 1, 1}; box dya= {0, 0+.0001, 1, 1}; box dwa= {0, 0, 1+.0001, 1}; box dha= {0, 0, 1, 1+.0001}; box b = {.5, .5, .2, .2}; dbox di = dunion(a,b); printf("Union: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); float inter = box_union(a, b); float xinter = box_union(dxa, b); float yinter = box_union(dya, b); float winter = box_union(dwa, b); float hinter = box_union(dha, b); xinter = (xinter - inter)/(.0001); yinter = (yinter - inter)/(.0001); winter = (winter - inter)/(.0001); hinter = (hinter - inter)/(.0001); printf("Union Manual %f %f %f %f\n", xinter, yinter, winter, hinter); } void test_dintersect() { box a = {0, 0, 1, 1}; box dxa= {0+.0001, 0, 1, 1}; box dya= {0, 0+.0001, 1, 1}; box dwa= {0, 0, 1+.0001, 1}; box dha= {0, 0, 1, 1+.0001}; box b = {.5, .5, .2, .2}; dbox di = dintersect(a,b); printf("Inter: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); float inter = box_intersection(a, b); float xinter = box_intersection(dxa, b); float yinter = box_intersection(dya, b); float winter = box_intersection(dwa, b); float hinter = box_intersection(dha, b); xinter = (xinter - inter)/(.0001); yinter = (yinter - inter)/(.0001); winter = (winter - inter)/(.0001); hinter = (hinter - inter)/(.0001); printf("Inter Manual %f %f %f %f\n", xinter, yinter, winter, hinter); } void test_box() { test_dintersect(); test_dunion(); box a = {0, 0, 1, 1}; box dxa= {0+.00001, 0, 1, 1}; box dya= {0, 0+.00001, 1, 1}; box dwa= {0, 0, 1+.00001, 1}; box dha= {0, 0, 1, 1+.00001}; box b = {.5, 0, .2, .2}; float iou = box_iou(a,b); iou = (1-iou)*(1-iou); printf("%f\n", iou); dbox d = diou(a, b); printf("%f %f %f %f\n", d.dx, d.dy, d.dw, d.dh); float xiou = box_iou(dxa, b); float yiou = box_iou(dya, b); float wiou = box_iou(dwa, b); float hiou = box_iou(dha, b); xiou = ((1-xiou)*(1-xiou) - iou)/(.00001); yiou = ((1-yiou)*(1-yiou) - iou)/(.00001); wiou = ((1-wiou)*(1-wiou) - iou)/(.00001); hiou = ((1-hiou)*(1-hiou) - iou)/(.00001); printf("manual %f %f %f %f\n", xiou, yiou, wiou, hiou); /* while(count++ < 300){ dbox d = diou(a, b); printf("%f %f %f %f\n", a.x, a.y, a.w, a.h); a.x += .1*d.dx; a.w += .1*d.dw; a.y += .1*d.dy; a.h += .1*d.dh; printf("inter: %f\n", box_intersection(a, b)); printf("union: %f\n", box_union(a, b)); printf("IOU: %f\n", box_iou(a, b)); if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) { printf("break!!!\n"); break; } } */ } dbox diou(box a, box b) { float u = box_union(a,b); float i = box_intersection(a,b); dbox di = dintersect(a,b); dbox du = dunion(a,b); dbox dd = {0,0,0,0}; if(i <= 0 || 1) { dd.dx = b.x - a.x; dd.dy = b.y - a.y; dd.dw = b.w - a.w; dd.dh = b.h - a.h; return dd; } dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u); dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u); dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u); dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u); return dd; } void forward_detection_layer(const detection_layer l, network_state state) { int in_i = 0; int out_i = 0; int locations = get_detection_layer_locations(l); int i,j; for(i = 0; i < l.batch*locations; ++i){ int mask = (!state.truth || state.truth[out_i + l.background + l.classes + 2]); float scale = 1; if(l.rescore) scale = state.input[in_i++]; else if(l.nuisance){ l.output[out_i++] = 1-state.input[in_i++]; scale = mask; } else if(l.background) l.output[out_i++] = scale*state.input[in_i++]; for(j = 0; j < l.classes; ++j){ l.output[out_i++] = scale*state.input[in_i++]; } if(l.nuisance){ }else if(l.background){ softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background); activate_array(state.input+in_i, l.coords, LOGISTIC); } for(j = 0; j < l.coords; ++j){ l.output[out_i++] = mask*state.input[in_i++]; } } float avg_iou = 0; int count = 0; if(l.does_cost && state.train){ *(l.cost) = 0; int size = get_detection_layer_output_size(l) * l.batch; memset(l.delta, 0, size * sizeof(float)); for (i = 0; i < l.batch*locations; ++i) { int classes = l.nuisance+l.classes; int offset = i*(classes+l.coords); for (j = offset; j < offset+classes; ++j) { *(l.cost) += pow(state.truth[j] - l.output[j], 2); l.delta[j] = state.truth[j] - l.output[j]; } box truth; truth.x = state.truth[j+0]/7; truth.y = state.truth[j+1]/7; truth.w = pow(state.truth[j+2], 2); truth.h = pow(state.truth[j+3], 2); box out; out.x = l.output[j+0]/7; out.y = l.output[j+1]/7; out.w = pow(l.output[j+2], 2); out.h = pow(l.output[j+3], 2); if(!(truth.w*truth.h)) continue; float iou = box_iou(out, truth); avg_iou += iou; ++count; dbox delta = diou(out, truth); l.delta[j+0] = 10 * delta.dx/7; l.delta[j+1] = 10 * delta.dy/7; l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w); l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h); *(l.cost) += pow((1-iou), 2); l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]); l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]); l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]); l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]); if(1){ for (j = offset; j < offset+classes; ++j) { if(state.truth[j]) state.truth[j] = iou; l.delta[j] = state.truth[j] - l.output[j]; } } /* */ } printf("Avg IOU: %f\n", avg_iou/count); } } void backward_detection_layer(const detection_layer l, network_state state) { int locations = get_detection_layer_locations(l); int i,j; int in_i = 0; int out_i = 0; for(i = 0; i < l.batch*locations; ++i){ float scale = 1; float latent_delta = 0; if(l.rescore) scale = state.input[in_i++]; else if (l.nuisance) state.delta[in_i++] = -l.delta[out_i++]; else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++]; for(j = 0; j < l.classes; ++j){ latent_delta += state.input[in_i]*l.delta[out_i]; state.delta[in_i++] = scale*l.delta[out_i++]; } if (l.nuisance) { }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i); for(j = 0; j < l.coords; ++j){ state.delta[in_i++] = l.delta[out_i++]; } if(l.rescore) state.delta[in_i-l.coords-l.classes-l.rescore-l.background] = latent_delta; } } #ifdef GPU void forward_detection_layer_gpu(const detection_layer l, network_state state) { int outputs = get_detection_layer_output_size(l); float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(l.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); } cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); network_state cpu_state; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_detection_layer(l, cpu_state); cuda_push_array(l.output_gpu, l.output, l.batch*outputs); cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs); free(cpu_state.input); if(cpu_state.truth) free(cpu_state.truth); } void backward_detection_layer_gpu(detection_layer l, network_state state) { int outputs = get_detection_layer_output_size(l); float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ truth_cpu = calloc(l.batch*outputs, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); } network_state cpu_state; cpu_state.train = state.train; cpu_state.input = in_cpu; cpu_state.truth = truth_cpu; cpu_state.delta = delta_cpu; cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs); backward_detection_layer(l, cpu_state); cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs); free(in_cpu); free(delta_cpu); } #endif