#include "region_layer.h" #include "activations.h" #include "softmax_layer.h" #include "blas.h" #include "box.h" #include "cuda.h" #include "utils.h" #include #include #include #include region_layer make_region_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) { region_layer l = {0}; l.type = REGION; l.n = n; l.batch = batch; l.inputs = inputs; l.classes = classes; l.coords = coords; l.rescore = rescore; l.side = side; assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); l.cost = calloc(1, sizeof(float)); l.outputs = l.inputs; l.truths = l.side*l.side*(1+l.coords+l.classes); l.output = calloc(batch*l.outputs, sizeof(float)); l.delta = calloc(batch*l.outputs, sizeof(float)); #ifdef GPU l.output_gpu = cuda_make_array(l.output, batch*l.outputs); l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); #endif fprintf(stderr, "Region Layer\n"); srand(0); return l; } void forward_region_layer(const region_layer l, network_state state) { int locations = l.side*l.side; int i,j; memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); for(i = 0; i < l.batch*locations; ++i){ int index = i*((1+l.coords)*l.n + l.classes); if(l.softmax){ activate_array(l.output + index, l.n*(1+l.coords), LOGISTIC); int offset = l.n*(1+l.coords); softmax_array(l.output + index + offset, l.classes, l.output + index + offset); } } if(state.train){ float avg_iou = 0; float avg_cat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; *(l.cost) = 0; int size = l.inputs * l.batch; memset(l.delta, 0, size * sizeof(float)); for (i = 0; i < l.batch*locations; ++i) { int index = i*((1+l.coords)*l.n + l.classes); for(j = 0; j < l.n; ++j){ int prob_index = index + j*(1 + l.coords); l.delta[prob_index] = (1./l.n)*(0-l.output[prob_index]); if(l.softmax){ l.delta[prob_index] = 1./(l.n*l.side)*(0-l.output[prob_index]); } *(l.cost) += (1./l.n)*pow(l.output[prob_index], 2); //printf("%f\n", l.output[prob_index]); avg_anyobj += l.output[prob_index]; } int truth_index = i*(1 + l.coords + l.classes); int best_index = -1; float best_iou = 0; float best_rmse = 4; int bg = !state.truth[truth_index]; if(bg) { continue; } int class_index = index + l.n*(1+l.coords); for(j = 0; j < l.classes; ++j) { l.delta[class_index+j] = state.truth[truth_index+1+j] - l.output[class_index+j]; *(l.cost) += pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; } truth_index += l.classes + 1; box truth = {state.truth[truth_index+0], state.truth[truth_index+1], state.truth[truth_index+2], state.truth[truth_index+3]}; truth.x /= l.side; truth.y /= l.side; for(j = 0; j < l.n; ++j){ int out_index = index + j*(1+l.coords); box out = {l.output[out_index+1], l.output[out_index+2], l.output[out_index+3], l.output[out_index+4]}; out.x /= l.side; out.y /= l.side; if (l.sqrt){ out.w = out.w*out.w; out.h = out.h*out.h; } float iou = box_iou(out, truth); float rmse = box_rmse(out, truth); if(best_iou > 0 || iou > 0){ if(iou > best_iou){ best_iou = iou; best_index = j; } }else{ if(rmse < best_rmse){ best_rmse = rmse; best_index = j; } } } //printf("%d", best_index); int in_index = index + best_index*(1+l.coords); *(l.cost) -= pow(l.output[in_index], 2); *(l.cost) += pow(1-l.output[in_index], 2); avg_obj += l.output[in_index]; l.delta[in_index+0] = (1.-l.output[in_index]); if(l.softmax){ l.delta[in_index+0] = 5*(1.-l.output[in_index]); } //printf("%f\n", l.output[in_index]); l.delta[in_index+1] = 5*(state.truth[truth_index+0] - l.output[in_index+1]); l.delta[in_index+2] = 5*(state.truth[truth_index+1] - l.output[in_index+2]); if(l.sqrt){ l.delta[in_index+3] = 5*(sqrt(state.truth[truth_index+2]) - l.output[in_index+3]); l.delta[in_index+4] = 5*(sqrt(state.truth[truth_index+3]) - l.output[in_index+4]); }else{ l.delta[in_index+3] = 5*(state.truth[truth_index+2] - l.output[in_index+3]); l.delta[in_index+4] = 5*(state.truth[truth_index+3] - l.output[in_index+4]); } *(l.cost) += pow(1-best_iou, 2); avg_iou += best_iou; ++count; if(l.softmax){ gradient_array(l.output + index, l.n*(1+l.coords), LOGISTIC, l.delta + index); } } printf("Avg IOU: %f, Avg Cat Pred: %f, Avg Obj: %f, Avg Any: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); } } void backward_region_layer(const region_layer l, network_state state) { axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); } #ifdef GPU void forward_region_layer_gpu(const region_layer l, network_state state) { float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); truth_cpu = calloc(num_truth, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, num_truth); } cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); network_state cpu_state; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_region_layer(l, cpu_state); cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); free(cpu_state.input); if(cpu_state.truth) free(cpu_state.truth); } void backward_region_layer_gpu(region_layer l, network_state state) { axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); } #endif