from glob import glob import matplotlib.pyplot as plt import matplotlib.image as mpimage import pickle import math import random import os import cv2 import fetch_data import numpy as np import pandas as pd import transform_data class Backgrounds: """ Container class for all background images for generator Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection """ def __init__(self, images=None, dumps_dir='data/dtd/images'): if images is not None: self._images = images else: # load from pickle if not os.path.exists(dumps_dir): print('Warning: directory for dump %s doesn\'t exist' % dumps_dir) return self._images = [] for dump_name in glob(dumps_dir + '/*.pck'): with open(dump_name, 'rb') as dump: print('Loading ' + dump_name) images = pickle.load(dump) self._images += images if len(self._images) == 0: self._images = load_dtd() print('# of images loaded: %d' % len(self._images)) def get_random(self, display=False): bg = self._images[random.randint(0, len(self._images) - 1)] if display: plt.show(bg) return bg def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000): """ Load Describable Texture Dataset (DTD) from local :param dtd_dir: path of the DTD images folder :param dump_it: flag for pickling it :param dump_batch_size: # of images stored per pickle file :return: list of all DTD images """ if not os.path.exists(dtd_dir): print('Warning: directory for DTD %s doesn\'t exist.' % dtd_dir) print('You can download the dataset using this command:' '!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz') return [] bg_images = [] # Search the directory for all images, and append them for subdir in glob(dtd_dir + "/*"): for f in glob(subdir + "/*.jpg"): bg_images.append(mpimage.imread(f)) print("# of images loaded :", len(bg_images)) # Save them as a pickle if necessary if dump_it: for i in range(math.ceil(len(bg_images) / dump_batch_size)): dump_name = '%s/dtd_dump_%d.pck' % (dtd_dir, i) with open(dump_name, 'wb') as dump: print('Dumping ' + dump_name) pickle.dump(bg_images[i * dump_batch_size:(i + 1) * dump_batch_size], dump) return bg_images def apply_bounding_box(img, card_info, display=False): """ Given a card image, extract specific features that can be used to train a model. Note: Mana & set symbols are deprecated from the feature list. Refer to previous commits for their implementation: https://github.com/hj3yoo/mtg_card_detector/tree/bb34d4e13da0f4753fbdefee837f54b16149d3ef :param img: image of the card :param card_info: characteristics of this card :param display: flag for displaying the extracted features :return: """ # List of detected objects to be fed into the neural net # The first object is the entire card detected_object_list = [transform_data.ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)), (0, len(img))])] return detected_object_list def main(): random.seed() #bg_images = load_dtd() #bg = Backgrounds() #bg.get_random(display=True) card_pool = pd.DataFrame() for set_name in fetch_data.all_set_list: df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name) #for _ in range(3): # card_info = df.iloc[random.randint(0, df.shape[0] - 1)] # # Currently ignoring planeswalker cards due to their different card layout # is_planeswalker = 'Planeswalker' in card_info['type_line'] # if not is_planeswalker: # card_pool = card_pool.append(card_info) card_pool = card_pool.append(df) ''' print(card_pool) mana_symbol_set = set() for _, card_info in card_pool.iterrows(): has_mana_cost = isinstance(card_info['mana_cost'], str) if has_mana_cost: mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost']) for symbol in mana_cost: mana_symbol_set.add(symbol) print(mana_symbol_set) ''' for _, card_info in card_pool.iterrows(): img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'], fetch_data.get_valid_filename(card_info['name'])) print(img_name) card_img = cv2.imread(img_name) if card_img is None: fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set']) card_img = cv2.imread(img_name) detected_object_list = apply_bounding_box(card_img, card_info, display=True) print(detected_object_list) return if __name__ == '__main__': main()