#include "mini_blas.h" //From Berkeley Vision's Caffe! //https://github.com/BVLC/caffe/blob/master/LICENSE void im2col_cpu(float* data_im, const int batch, const int channels, const int height, const int width, const int ksize, const int stride, float* data_col) { int c,h,w,b; int height_col = (height - ksize) / stride + 1; int width_col = (width - ksize) / stride + 1; int channels_col = channels * ksize * ksize; int im_size = height*width*channels; int col_size = height_col*width_col*channels_col; for(b = 0; b < batch; ++b){ for ( c = 0; c < channels_col; ++c) { int w_offset = c % ksize; int h_offset = (c / ksize) % ksize; int c_im = c / ksize / ksize; for ( h = 0; h < height_col; ++h) { for ( w = 0; w < width_col; ++w) { data_col[(c * height_col + h) * width_col + w] = data_im[(c_im * height + h * stride + h_offset) * width + w * stride + w_offset]; } } } data_im += im_size; data_col+= col_size; } } #ifdef GPU #include "opencl.h" #include cl_kernel get_im2col_kernel() { static int init = 0; static cl_kernel im2col_kernel; if(!init){ im2col_kernel = get_kernel("src/im2col.cl", "im2col", 0); init = 1; } return im2col_kernel; } void im2col_ongpu(cl_mem data_im, const int batch, const int channels, const int height, const int width, const int ksize, const int stride, cl_mem data_col) { cl_setup(); cl_kernel im2col_kernel = get_im2col_kernel(); cl_command_queue queue = cl.queue; cl_uint i = 0; cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(data_im), (void*) &data_im); cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(batch), (void*) &batch); cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(channels), (void*) &channels); cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(height), (void*) &height); cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(width), (void*) &width); cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(ksize), (void*) &ksize); cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(stride), (void*) &stride); cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(data_col), (void*) &data_col); check_error(cl); int height_col = (height - ksize) / stride + 1; int width_col = (width - ksize) / stride + 1; int channels_col = channels * ksize * ksize; size_t global_size[2]; size_t local_size[2]; global_size[0] = batch; global_size[1] = channels_col; local_size[0] = height_col; local_size[1] = width_col; clEnqueueNDRangeKernel(queue, im2col_kernel, 2, 0, global_size, local_size, 0, 0, 0); check_error(cl); } void im2col_gpu(float *data_im, const int batch, const int channels, const int height, const int width, const int ksize, const int stride, float *data_col) { cl_setup(); cl_context context = cl.context; cl_command_queue queue = cl.queue; size_t size = sizeof(float)*(channels*height*width*batch); cl_mem im_gpu = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, size, data_im, &cl.error); check_error(cl); int height_col = (height - ksize) / stride + 1; int width_col = (width - ksize) / stride + 1; int channels_col = channels * ksize * ksize; size = sizeof(float)*(height_col*width_col*channels_col*batch); cl_mem col_gpu = clCreateBuffer(context, CL_MEM_WRITE_ONLY|CL_MEM_COPY_HOST_PTR, size, data_col, &cl.error); check_error(cl); im2col_ongpu(im_gpu, batch, channels, height, width, ksize, stride, col_gpu); clEnqueueReadBuffer(queue, col_gpu, CL_TRUE, 0, size, data_col, 0, 0, 0); check_error(cl); clReleaseMemObject(col_gpu); clReleaseMemObject(im_gpu); } #endif