import cv2
|
import numpy as np
|
import os
|
import sys
|
import math
|
from operator import itemgetter
|
|
|
# Disclaimer: majority of the basic framework in this file is modified from the following tutorial:
|
# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
|
|
|
# Get the names of the output layers
|
def get_outputs_names(net):
|
# Get the names of all the layers in the network
|
layers_names = net.getLayerNames()
|
# Get the names of the output layers, i.e. the layers with unconnected outputs
|
return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
|
# Remove the bounding boxes with low confidence using non-maxima suppression
|
def post_process(frame, outs, thresh_conf, thresh_nms):
|
frame_height = frame.shape[0]
|
frame_width = frame.shape[1]
|
|
# Scan through all the bounding boxes output from the network and keep only the
|
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
|
class_ids = []
|
confidences = []
|
boxes = []
|
for out in outs:
|
for detection in out:
|
scores = detection[5:]
|
class_id = np.argmax(scores)
|
confidence = scores[class_id]
|
if confidence > thresh_conf:
|
center_x = int(detection[0] * frame_width)
|
center_y = int(detection[1] * frame_height)
|
width = int(detection[2] * frame_width)
|
height = int(detection[3] * frame_height)
|
left = int(center_x - width / 2)
|
top = int(center_y - height / 2)
|
class_ids.append(class_id)
|
confidences.append(float(confidence))
|
boxes.append([left, top, width, height])
|
|
# Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences.
|
indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)]
|
|
ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices]
|
return ret
|
|
|
# Draw the predicted bounding box
|
def draw_pred(frame, class_id, classes, conf, left, top, right, bottom):
|
# Draw a bounding box.
|
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
|
|
label = '%.2f' % conf
|
|
# Get the label for the class name and its confidence
|
if classes:
|
assert (class_id < len(classes))
|
label = '%s:%s' % (classes[class_id], label)
|
|
# Display the label at the top of the bounding box
|
label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
top = max(top, label_size[1])
|
cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
|
|
def remove_glare(img):
|
"""
|
Inspired from:
|
http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html
|
The idea is to find area that has low saturation but high value, which is what a glare usually look like.
|
"""
|
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
_, s, v = cv2.split(img_hsv)
|
non_sat = (s < 32) * 255 # Find all pixels that are not very saturated
|
|
# Slightly decrease the area of the non-satuared pixels by a erosion operation.
|
disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
non_sat = cv2.erode(non_sat.astype(np.uint8), disk)
|
|
# Set all brightness values, where the pixels are still saturated to 0.
|
v[non_sat == 0] = 0
|
# filter out very bright pixels.
|
glare = (v > 240) * 255
|
|
# Slightly increase the area for each pixel
|
glare = cv2.dilate(glare.astype(np.uint8), disk)
|
glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200
|
glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR)
|
corrected = np.where(glare, glare_reduced, img)
|
return corrected
|
|
|
def find_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200, min_line_length=None, max_line_gap=None, debug=False):
|
# Default values
|
if blur_radius is None:
|
blur_radius = math.floor(min(img.shape[:2]) / 100 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd
|
if dilate_radius is None:
|
dilate_radius = math.floor(min(img.shape[:2]) / 67 + 0.5)
|
if min_line_length is None:
|
min_line_length = min(img.shape[:2]) / 3
|
if max_line_gap is None:
|
max_line_gap = min(img.shape[:2]) / 10
|
|
thresh_radius = math.floor(min(img.shape[:2]) / 50 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd
|
|
print(blur_radius, dilate_radius, thresh_radius, min_line_length, max_line_gap)
|
'''
|
blur_radius = 3
|
dilate_radius = 3
|
thresh_radius = 3
|
min_line_length = 5
|
max_line_gap = 5
|
'''
|
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
# Median blur better removes background textures than Gaussian blur
|
img_blur = cv2.medianBlur(img_gray, blur_radius)
|
# Truncate the bright area while detecting the border
|
img_thresh = cv2.adaptiveThreshold(img_blur, 128, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, thresh_radius, 5)
|
# _, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC)
|
|
# Dilate the image to emphasize thick borders around the card
|
kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8)
|
img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1)
|
img_dilate = cv2.erode(img_dilate, kernel_dilate, iterations=1)
|
|
img_contour = img_dilate.copy()
|
_, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
|
img_contour = cv2.drawContours(img_contour, contours, -1, (128, 0, 0), 1)
|
|
# find the biggest area
|
c = max(contours, key=cv2.contourArea)
|
|
x, y, w, h = cv2.boundingRect(c)
|
# draw the book contour (in green)
|
img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1)
|
|
# Canny edge - low minimum hysteresis to detect glowed area,
|
# and high maximum hysteresis to compensate for high false positives.
|
img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst)
|
|
detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=300,
|
minLineLength=min_line_length,
|
maxLineGap=max_line_gap)
|
card_found = detected_lines is not None
|
if card_found:
|
print(len(detected_lines))
|
|
img_hough = cv2.cvtColor(img_canny.copy(), cv2.COLOR_GRAY2BGR)
|
if card_found:
|
for line in detected_lines:
|
x1, y1, x2, y2 = line[0]
|
cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1)
|
|
img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
|
img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
|
#img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR)
|
return img_thresh, img_dilate, img_contour, img_hough
|
|
|
def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
|
img_copy = img.copy()
|
# Create a 4D blob from a frame.
|
blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
|
|
# Sets the input to the network
|
net.setInput(blob)
|
|
# Runs the forward pass to get output of the output layers
|
outs = net.forward(get_outputs_names(net))
|
|
# Remove the bounding boxes with low confidence
|
obj_list = post_process(img, outs, thresh_conf, thresh_nms)
|
for obj in obj_list:
|
class_id, confidence, box = obj
|
left, top, width, height = box
|
draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height)
|
|
# Put efficiency information. The function getPerfProfile returns the
|
# overall time for inference(t) and the timings for each of the layers(in layersTimes)
|
t, _ = net.getPerfProfile()
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
|
cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
|
if out_path is not None:
|
cv2.imwrite(out_path, img.astype(np.uint8))
|
if display:
|
no_glare = remove_glare(img_copy)
|
img_concat = np.concatenate((img, no_glare), axis=1)
|
cv2.imshow('result', img_concat)
|
for i in range(len(obj_list)):
|
class_id, confidence, box = obj_list[i]
|
left, top, width, height = box
|
img_snip = img_copy[max(0, top):min(img.shape[0], top + height),
|
max(0, left):min(img.shape[1], left + width)]
|
img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
|
img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
|
cv2.imshow('feature#%d' % i, img_concat)
|
cv2.waitKey(0)
|
cv2.destroyAllWindows()
|
|
return obj_list
|
|
|
def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
|
if out_path is not None:
|
vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
|
(round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
max_num_obj = 0
|
while True:
|
ret, frame = capture.read()
|
if not ret:
|
# End of video
|
print("End of video. Press any key to exit")
|
cv2.waitKey(0)
|
break
|
img = frame.copy()
|
obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim,
|
display=False, out_path=None)
|
max_num_obj = max(max_num_obj, len(obj_list))
|
if display:
|
no_glare = remove_glare(img)
|
img_concat = np.concatenate((frame, no_glare), axis=1)
|
cv2.imshow('result', img_concat)
|
for i in range(len(obj_list)):
|
class_id, confidence, box = obj_list[i]
|
left, top, width, height = box
|
img_snip = img[max(0, top):min(img.shape[0], top + height),
|
max(0, left):min(img.shape[1], left + width)]
|
img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
|
img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
|
cv2.imshow('feature#%d' % i, img_concat)
|
for i in range(len(obj_list), max_num_obj):
|
cv2.imshow('feature#%d' % i, np.zeros((1, 1), dtype=np.uint8))
|
if len(obj_list) > 0:
|
cv2.waitKey(0)
|
if out_path is not None:
|
vid_writer.write(frame.astype(np.uint8))
|
cv2.waitKey(1)
|
|
if out_path is not None:
|
vid_writer.release()
|
cv2.destroyAllWindows()
|
|
|
def main():
|
# Specify paths for all necessary files
|
test_path = os.path.abspath('../data/test1.jpg')
|
weight_path = 'weights/second_general/tiny_yolo_final.weights'
|
cfg_path = 'cfg/tiny_yolo.cfg'
|
class_path = "data/obj.names"
|
out_dir = 'out'
|
if not os.path.isfile(test_path):
|
print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(weight_path):
|
print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(cfg_path):
|
print('The config file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(class_path):
|
print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
|
# Setup
|
# Read class names from text file
|
with open(class_path, 'r') as f:
|
classes = [line.strip() for line in f.readlines()]
|
# Load up the neural net using the config and weights
|
net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path)
|
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
|
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
|
# Save the detection result if out_dir is provided
|
if out_dir is None or out_dir == '':
|
out_path = None
|
else:
|
out_path = out_dir + '/' + os.path.split(test_path)[1]
|
# Check if test file is image or video
|
test_ext = test_path[test_path.find('.') + 1:]
|
|
if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
|
img = cv2.imread(test_path)
|
detect_frame(net, classes, img, out_path=out_path)
|
else:
|
capture = cv2.VideoCapture(test_path)
|
detect_video(net, classes, capture, out_path=out_path)
|
capture.release()
|
pass
|
|
|
if __name__ == '__main__':
|
main()
|