#include "detection_layer.h"
|
#include "activations.h"
|
#include "softmax_layer.h"
|
#include "blas.h"
|
#include "cuda.h"
|
#include "utils.h"
|
#include <stdio.h>
|
#include <string.h>
|
#include <stdlib.h>
|
|
int get_detection_layer_locations(detection_layer layer)
|
{
|
return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
|
}
|
|
int get_detection_layer_output_size(detection_layer layer)
|
{
|
return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
|
}
|
|
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
|
{
|
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
|
layer->batch = batch;
|
layer->inputs = inputs;
|
layer->classes = classes;
|
layer->coords = coords;
|
layer->rescore = rescore;
|
layer->nuisance = nuisance;
|
layer->cost = calloc(1, sizeof(float));
|
layer->does_cost=1;
|
layer->background = background;
|
int outputs = get_detection_layer_output_size(*layer);
|
layer->output = calloc(batch*outputs, sizeof(float));
|
layer->delta = calloc(batch*outputs, sizeof(float));
|
#ifdef GPU
|
layer->output_gpu = cuda_make_array(0, batch*outputs);
|
layer->delta_gpu = cuda_make_array(0, batch*outputs);
|
#endif
|
|
fprintf(stderr, "Detection Layer\n");
|
srand(0);
|
|
return layer;
|
}
|
|
void dark_zone(detection_layer layer, int class, int start, network_state state)
|
{
|
int index = start+layer.background+class;
|
int size = layer.classes+layer.coords+layer.background;
|
int location = (index%(7*7*size)) / size ;
|
int r = location / 7;
|
int c = location % 7;
|
int dr, dc;
|
for(dr = -1; dr <= 1; ++dr){
|
for(dc = -1; dc <= 1; ++dc){
|
if(!(dr || dc)) continue;
|
if((r + dr) > 6 || (r + dr) < 0) continue;
|
if((c + dc) > 6 || (c + dc) < 0) continue;
|
int di = (dr*7 + dc) * size;
|
if(state.truth[index+di]) continue;
|
layer.output[index + di] = 0;
|
//if(!state.truth[start+di]) continue;
|
//layer.output[start + di] = 1;
|
}
|
}
|
}
|
|
typedef struct{
|
float dx, dy, dw, dh;
|
} dbox;
|
|
dbox derivative(box a, box b)
|
{
|
dbox d;
|
d.dx = 0;
|
d.dw = 0;
|
float l1 = a.x - a.w/2;
|
float l2 = b.x - b.w/2;
|
if (l1 > l2){
|
d.dx -= 1;
|
d.dw += .5;
|
}
|
float r1 = a.x + a.w/2;
|
float r2 = b.x + b.w/2;
|
if(r1 < r2){
|
d.dx += 1;
|
d.dw += .5;
|
}
|
if (l1 > r2) {
|
d.dx = -1;
|
d.dw = 0;
|
}
|
if (r1 < l2){
|
d.dx = 1;
|
d.dw = 0;
|
}
|
|
d.dy = 0;
|
d.dh = 0;
|
float t1 = a.y - a.h/2;
|
float t2 = b.y - b.h/2;
|
if (t1 > t2){
|
d.dy -= 1;
|
d.dh += .5;
|
}
|
float b1 = a.y + a.h/2;
|
float b2 = b.y + b.h/2;
|
if(b1 < b2){
|
d.dy += 1;
|
d.dh += .5;
|
}
|
if (t1 > b2) {
|
d.dy = -1;
|
d.dh = 0;
|
}
|
if (b1 < t2){
|
d.dy = 1;
|
d.dh = 0;
|
}
|
return d;
|
}
|
|
float overlap(float x1, float w1, float x2, float w2)
|
{
|
float l1 = x1 - w1/2;
|
float l2 = x2 - w2/2;
|
float left = l1 > l2 ? l1 : l2;
|
float r1 = x1 + w1/2;
|
float r2 = x2 + w2/2;
|
float right = r1 < r2 ? r1 : r2;
|
return right - left;
|
}
|
|
float box_intersection(box a, box b)
|
{
|
float w = overlap(a.x, a.w, b.x, b.w);
|
float h = overlap(a.y, a.h, b.y, b.h);
|
if(w < 0 || h < 0) return 0;
|
float area = w*h;
|
return area;
|
}
|
|
float box_union(box a, box b)
|
{
|
float i = box_intersection(a, b);
|
float u = a.w*a.h + b.w*b.h - i;
|
return u;
|
}
|
|
float box_iou(box a, box b)
|
{
|
return box_intersection(a, b)/box_union(a, b);
|
}
|
|
dbox dintersect(box a, box b)
|
{
|
float w = overlap(a.x, a.w, b.x, b.w);
|
float h = overlap(a.y, a.h, b.y, b.h);
|
dbox dover = derivative(a, b);
|
dbox di;
|
|
di.dw = dover.dw*h;
|
di.dx = dover.dx*h;
|
di.dh = dover.dh*w;
|
di.dy = dover.dy*w;
|
if(h < 0 || w < 0){
|
di.dx = dover.dx;
|
di.dy = dover.dy;
|
}
|
return di;
|
}
|
|
dbox dunion(box a, box b)
|
{
|
dbox du = {0,0,0,0};;
|
float w = overlap(a.x, a.w, b.x, b.w);
|
float h = overlap(a.y, a.h, b.y, b.h);
|
if(w > 0 && h > 0){
|
dbox di = dintersect(a, b);
|
du.dw = h - di.dw;
|
du.dh = w - di.dw;
|
du.dx = -di.dx;
|
du.dy = -di.dy;
|
}
|
return du;
|
}
|
|
dbox diou(box a, box b)
|
{
|
float u = box_union(a,b);
|
float i = box_intersection(a,b);
|
dbox di = dintersect(a,b);
|
dbox du = dunion(a,b);
|
dbox dd = {0,0,0,0};
|
if(i < 0) {
|
dd.dx = b.x - a.x;
|
dd.dy = b.y - a.y;
|
dd.dw = b.w - a.w;
|
dd.dh = b.h - a.h;
|
return dd;
|
}
|
dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u);
|
dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u);
|
dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u);
|
dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u);
|
return dd;
|
}
|
|
void test_box()
|
{
|
box a = {1, 1, 1, 1};
|
box b = {0, 0, .5, .2};
|
int count = 0;
|
while(count++ < 300){
|
dbox d = diou(a, b);
|
printf("%f %f %f %f\n", a.x, a.y, a.w, a.h);
|
a.x += .1*d.dx;
|
a.w += .1*d.dw;
|
a.y += .1*d.dy;
|
a.h += .1*d.dh;
|
printf("inter: %f\n", box_intersection(a, b));
|
printf("union: %f\n", box_union(a, b));
|
printf("IOU: %f\n", box_iou(a, b));
|
if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) {
|
printf("break!!!\n");
|
break;
|
}
|
}
|
}
|
|
void forward_detection_layer(const detection_layer layer, network_state state)
|
{
|
int in_i = 0;
|
int out_i = 0;
|
int locations = get_detection_layer_locations(layer);
|
int i,j;
|
for(i = 0; i < layer.batch*locations; ++i){
|
int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
|
float scale = 1;
|
if(layer.rescore) scale = state.input[in_i++];
|
else if(layer.nuisance){
|
layer.output[out_i++] = 1-state.input[in_i++];
|
scale = mask;
|
}
|
else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
|
|
for(j = 0; j < layer.classes; ++j){
|
layer.output[out_i++] = scale*state.input[in_i++];
|
}
|
if(layer.nuisance){
|
|
}else if(layer.background){
|
softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
|
activate_array(state.input+in_i, layer.coords, LOGISTIC);
|
}
|
for(j = 0; j < layer.coords; ++j){
|
layer.output[out_i++] = mask*state.input[in_i++];
|
}
|
}
|
if(layer.does_cost){
|
*(layer.cost) = 0;
|
int size = get_detection_layer_output_size(layer) * layer.batch;
|
memset(layer.delta, 0, size * sizeof(float));
|
for(i = 0; i < layer.batch*locations; ++i){
|
int classes = layer.nuisance+layer.classes;
|
int offset = i*(classes+layer.coords);
|
for(j = offset; j < offset+classes; ++j){
|
*(layer.cost) += pow(state.truth[j] - layer.output[j], 2);
|
layer.delta[j] = state.truth[j] - layer.output[j];
|
}
|
box truth;
|
truth.x = state.truth[j+0];
|
truth.y = state.truth[j+1];
|
truth.w = state.truth[j+2];
|
truth.h = state.truth[j+3];
|
box out;
|
out.x = layer.output[j+0];
|
out.y = layer.output[j+1];
|
out.w = layer.output[j+2];
|
out.h = layer.output[j+3];
|
if(!(truth.w*truth.h)) continue;
|
float iou = box_iou(truth, out);
|
//printf("iou: %f\n", iou);
|
*(layer.cost) += pow((1-iou), 2);
|
dbox d = diou(out, truth);
|
layer.delta[j+0] = d.dx;
|
layer.delta[j+1] = d.dy;
|
layer.delta[j+2] = d.dw;
|
layer.delta[j+3] = d.dh;
|
}
|
}
|
/*
|
int count = 0;
|
for(i = 0; i < layer.batch*locations; ++i){
|
for(j = 0; j < layer.classes+layer.background; ++j){
|
printf("%f, ", layer.output[count++]);
|
}
|
printf("\n");
|
for(j = 0; j < layer.coords; ++j){
|
printf("%f, ", layer.output[count++]);
|
}
|
printf("\n");
|
}
|
*/
|
/*
|
if(layer.background || 1){
|
for(i = 0; i < layer.batch*locations; ++i){
|
int index = i*(layer.classes+layer.coords+layer.background);
|
for(j= 0; j < layer.classes; ++j){
|
if(state.truth[index+j+layer.background]){
|
//dark_zone(layer, j, index, state);
|
}
|
}
|
}
|
}
|
*/
|
}
|
|
void backward_detection_layer(const detection_layer layer, network_state state)
|
{
|
int locations = get_detection_layer_locations(layer);
|
int i,j;
|
int in_i = 0;
|
int out_i = 0;
|
for(i = 0; i < layer.batch*locations; ++i){
|
float scale = 1;
|
float latent_delta = 0;
|
if(layer.rescore) scale = state.input[in_i++];
|
else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++];
|
else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
|
for(j = 0; j < layer.classes; ++j){
|
latent_delta += state.input[in_i]*layer.delta[out_i];
|
state.delta[in_i++] = scale*layer.delta[out_i++];
|
}
|
|
if (layer.nuisance) {
|
|
}else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
|
for(j = 0; j < layer.coords; ++j){
|
state.delta[in_i++] = layer.delta[out_i++];
|
}
|
if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
|
}
|
}
|
|
#ifdef GPU
|
|
void forward_detection_layer_gpu(const detection_layer layer, network_state state)
|
{
|
int outputs = get_detection_layer_output_size(layer);
|
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *truth_cpu = 0;
|
if(state.truth){
|
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
|
cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
|
}
|
cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
|
network_state cpu_state;
|
cpu_state.train = state.train;
|
cpu_state.truth = truth_cpu;
|
cpu_state.input = in_cpu;
|
forward_detection_layer(layer, cpu_state);
|
cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
|
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
|
free(cpu_state.input);
|
if(cpu_state.truth) free(cpu_state.truth);
|
}
|
|
void backward_detection_layer_gpu(detection_layer layer, network_state state)
|
{
|
int outputs = get_detection_layer_output_size(layer);
|
|
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *truth_cpu = 0;
|
if(state.truth){
|
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
|
cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
|
}
|
network_state cpu_state;
|
cpu_state.train = state.train;
|
cpu_state.input = in_cpu;
|
cpu_state.truth = truth_cpu;
|
cpu_state.delta = delta_cpu;
|
|
cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
|
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
|
backward_detection_layer(layer, cpu_state);
|
cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
|
|
free(in_cpu);
|
free(delta_cpu);
|
}
|
#endif
|